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Preface

Many vision problems have to deal with different entities (regions, lines, line
junctions, etc.) and their relationships. These entities together with their rela-
tionships may be encoded using graphs or hypergraphs. The structural infor-
mation encoded by graphs allows computer vision algorithms to address both
the features of the different entities and the structural or topological relation-
ships between them. Moreover, turning a computer vision problem into a graph
problem allows one to access the full arsenal of graph algorithms developed in
computer science.

The Technical Committee (TC15, http://www.iapr.org/tcs.html) of the
IAPR (International Association for Pattern Recognition) has been funded in
order to federate and to encourage research work in these fields. Among its ac-
tivities, TC15 encourages the organization of special graph sessions at many
computer vision conferences and organizes the biennial workshop GbR. While
being designed within a specific framework, the graph algorithms developed for
computer vision and pattern recognition tasks often share constraints and goals
with those developed in other research fields such as data mining, robotics and
discrete geometry. The TC15 community is thus not closed in its research fields
but on the contrary is open to interchanges with other groups/communities.
Within this framework, the TC15 community decided to organize the fifth edi-
tion of its workshop jointly with the international conference Discrete Geometry
for Computer Imagery (DGCI) organized by TC18 of the IAPR. Indeed, within
the pattern recognition field, many graph-based algorithms are used to analyze
the structures of the underlying objects. On the other hand, many algorithms
of discrete geometry aim at finding the structures of unstructured sets of pixels
or voxels. From this point of view, both communities aim at studying the struc-
tures of discrete objects. Both conferences were held in Poitiers, during the same
week, with a common session on Wednesday 13th of April.

This volume contains the papers presented at the 5th Workshop on Graph-
Based Representations in Pattern Recognition (GbR) organized by the IAPR
TC15. The workshop was held at the University of Poitiers, France during April
11–13, 2005. The previous workshops in the series were held in Lyon, France
(1997), Haindorf, Austria (1999) [3], Ischia, Italy (2001) [2], and York, UK
(2003) [1].

The papers presented during this workshop, while all based on graphs, cover
a wide range of research fields related to image processing and understanding.
Indeed, one paper presented by Alain Bretto and Luc Gillibert uses graphs for
low image processing such as noise attenuation and edge detection. Then several
papers present several segmentation methods based on graphs together with im-
proved graph data structures to encode fine properties of the partitions. Graphs
or hierarchical graph data structures may thus be used to encode fine proper-
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ties of the image’s content. However, graphs may also be used to encode shape
information. Many papers presented during this workshop encode a shape using
either its skeleton or a set of points characterizing it. Given a graph describing an
object (a shape, an image, a graphic, etc.) the next step consists of determining
a measure of similarity between these graphs in order to derive a similarity mea-
sure between the underlying objects. Several papers devoted to graph matching
attack this difficult problem using either exact or inexact algorithms. Algorithms
based on graph kernels and the heat kernel equations provide alternative and
interesting approaches to graph matching. Graph-matching algorithms may be
pushed one step further by studying not only the matching between two graphs
but also the classification of a set of graphs or the analysis of a sequence of
graphs. Several papers presented during the workshop present novel and inter-
esting ideas on these topics.

The papers presented here have all been reviewed by two reviewers and re-
vised by their authors. The 50 papers submitted to the GbR were written by
authors coming from 20 different countries located on five different continents.
Based on these 50 submitted papers the Program Committee selected 18 of them
as full papers and 17 of them as posters. We would therefore like to thank the
members of the Program Committee and the additional reviewers for their help
in ensuring that the papers were given a thorough and critical evaluation. We
would also like to thank our sponsors who provided the material and financial
help for the organization of this workshop.

April 2005 Luc Brun
Mario Vento
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Aline Deruyver, Yann Hodé, Eric Leammer, Jean-Michel Jolion . . . . . 213



Table of Contents XI

A Graph-Based Concept for Spatiotemporal Information in Cognitive
Vision

Adrian Ion, Yll Haxhimusa, Walter G. Kropatsch . . . . . . . . . . . . . . . . . . 223

Inexact Graph Matching

Approximating the Problem, not the Solution: An Alternative View of
Point Set Matching
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Hypergraph-Based Image Representation

Alain Bretto and Luc Gillibert

Université de Caen, GREYC CNRS UMR-6072, Campus II, Bd Marechal Juin BP,
5186, 14032 Caen cedex, France

{alain.bretto, lgillibe}@info.unicaen.fr

Abstract. An appropriate image representation induces some good im-
age treatment algorithms. Hypergraph theory is a theory of finite com-
binatorial sets, modeling a lot of problems of operational research and
combinatorial optimization. Hypergraphs are now used in many domains
such as chemistry, engineering and image processing. We present an
overview of a hypergraph-based picture representation giving much ap-
plication in picture manipulation, analysis and restoration: the Image
Adaptive Neighborhood Hypergraph (IANH). With the IANH it is pos-
sible to build powerful noise detection an elimination algorithm, but also
to make some edges detection or some image segmentation. IANH has
various applications and this paper presents a survey of them.

Keywords: Image Processing, Image Model, Segmentation, Edge De-
tection, Noise Cancellation, Hypergraph, Graph, Neighborhood Hyper-
graph.

1 Introduction

Graphs are very powerful tools for describing many problems and structures in
computer sciences but also in physic and mathematics. But graphs only describe
some binary relations and are not always sufficient for modeling some complex
problems or data. Hypergraph theory, originally developed by C. Berge [8] in
1960, is a generalization of graph theory. The idea consists in considering sets
as generalized edges and then calling a hypergraph the family of these edges.
This concept models more general types of relations than graph theory do. In
the last decades, the theory of hypergraphs has proved to be of a major interest
in applications to real-world problems. These mathematical frameworks can be
used to model networks, data structures, process scheduling, computations, and
a variety of other systems where complex relations between the objects in the
system play a dominant role.

To any digital image, a hypergraph, the Image Adaptive Neighborhood Hy-
pergraph (IANH), can be associated and used for image processing. Many pub-
lications were written about this hypergraph model and many applications were
found [1, 2, 4, 6]. This paper is a survey of different methods about image analysis
and treatment based on this adaptive neighborhood hypergraph model.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 A. Bretto and L. Gillibert

First, we give basic definitions about hypergraphs and the definition of the
IANH. Then we present an algorithm building the IANH and we study its prop-
erties and its complexity. Finally we illustrate some applications of the IANH
to the image segmentation, the edge detection and the noise cancellation, three
of the most important low level image processings. We give some powerful algo-
rithms always based on the adaptive neighborhood hypergraph associated to an
image. A set of examples is shown to illustrate the effectiveness of the algorithms.

2 Definitions

The general terminology concerning graphs and hypergraphs is similar to [8, 7].
All graphs in this paper are, finite, undirected, connected with no isolated vertex
and simple, i. e. graphs with no loops or multiple edges. We denote a graph
G = (V ; E). Given a graph G, we denote by Γ (x) the neighborhood of a vertex
x, i. e. the set consisting of all vertices adjacent to x which is defined by Γ (x) =
{y ∈ V, {x, y} ∈ E}.

A hypergraph H on a set X is a family (Ei)i∈I of non-empty subsets of X
called hyperedges with;⋃

i∈I

Ei = X, I = {1, 2, . . . , n}, n ∈ N

Let us note H = (S; (Ei)i∈I). For x ∈ S, a star of H (with center x) is the
set of hyperedges which contains x, and is called H(x). The degree of x is the
cardinality of the star H(x) denoted by dx = Card(H(x)).

Let H = (S; E = (Ei)i∈I) be a hypergraph, the dual hypergraph H∗ is the
hypergraph such that the set of vertices is the set of hyperedges, and the set of hy-
peredges is the set of stars of H. We can represent a hypergraph as in figure 1-(a).

A hyperedge Ei is isolated if and only if:

∀j ∈ I, j �= i, if Ei ∩ Ej �= ∅ then Ej ⊆ Ei

An important structure from a hypergraph is the notion of intersecting family.
A family of hyperedges is an intersecting family if the hyperedges from this family
intersect two by two. We can distinguish two types of intersecting families:

– Intersecting families with an empty intersection.
– Intersecting families with an non empty intersection.

A hypergraph has the Helly property if each family of hyperedges intersect-
ing two by two (intersecting family) has a non empty intersection (belongs to a
star). As example in figure 1-(a) the hypergraph has the Helly property. Fig-
ure 1-(b) shows these two types of intersecting hyperedges. To each graph one
can associate a hypergraph. Indeed, let G = (X, E) be a graph, the hypergraph
having the vertices of G as vertices and the neighborhood of these vertices as
hyperedges (including these vertices) is called the neighborhood hypergraph of G
and is denoted by:

HG = (X, (Ex = {x} ∪ Γ (x)))



Hypergraph-Based Image Representation 3

(a) (b)

Fig. 1. (a) Example of hypergraph, the set of vertices is {x1, x2, . . . , x13} and the set
of hyperedges is {E1, E2, E3, E4}. (b) We have two types of intersecting families the
first is the star the second has an empty intersection

3 Image Adaptive Hypergraph Model

First we recall some definitions about digital images. A distance d′ on X defines
a grid (a graph connected, regular, without both loop and multi-edge). A digital
image (on a grid) is a two-dimensional discrete function that has been digitized
both in spatial coordinates and in magnitude feature value. Throughout this
paper a digital image will be represented by the application I : X ⊆ Z2 → C ⊆
Zn with n ≥ 1, where C identifies the feature intensity level and X identifies a
set of points called image points. The couple (x, I(x)) is called a pixel. Let d be
a distance on C, we have a neighborhood relation on an image defined by:

∀x ∈ X, Γα,β(x) =
{x′ ∈ X, x′ �= x | d(I(x), I(x′)) < α and d′(x, x′) ≤ β} (1)

The neighborhood of x on the grid will be denoted by Γβ(x). So to each image
we can associate a hypergraph called Image Adaptive Neighborhood Hypergraph
(IANH): Hα,β =

(
X, ({x} ∪ Γα,β(x))x∈X

)
. The attribute α can be computed

in an adaptive way depending on local properties of the image. If α is constant
the hypergraph is called the Image Neighborhood Hypergraph (INH). Throughout
this paper α will be estimated by the standard deviation of the pixels {x}∪Γβ(x).

Algorithm: Image Adaptive Neighborhood Hypergraph
Construction of the hypergraph Hα,β .

Data: Image I of size mx ×my, and neighborhood order β
X = ∅ ;
For each pixel x of I, do ;

α = the standard deviation of the pixels {x} ∪ Γβ(x);
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Γα,β(x) = ∅;
For each pixel y of Γβ(x), do

if d(I(x), I(y)) ≤ α then
Γα,β(x) = Γα,β(x) ∪ {y};

end if
end for
X = X ∪ {x}; Eα,β(x) = {Γα,β(x) ∪ {x}};

end for
Hα,β = (X, (Eα,β(x))x∈X);

End

Data Structures Used: For each x, Γα,β(x) is a table of booleans, so Eα,β is
a mx ×my table of tables. The set X is a mx ×my table of booleans.

Proposition 1. Given β, the algorithm converges to a unique solution. Its com-
plexity is in O(n) (n standing for the pixel number of the image). (For the proof
report to [2]).

4 Detection of Impulsive Noise

A common type of corruption that occurs in image data is corruption by an
impulsive noise process. Attenuation of noise and preservation of details are
usually two contradictory aspects of image. Various noise reduction algorithms
make various assumptions, depending on the type of imagery and the goals of
the restoration [9],[10].

In this section, we present a noise cancellation algorithm that exploits a lack
of homogeneity criterion. We consider that the global homogeneity characterizes
regions, local homogeneity characterizes edges, no homogeneity characterizes a
noise. A noise reduction algorithm is based on the following criterion: binary
classification of hyperedge of image (H0 noisy hyperedge and H1 no noisy hy-
peredge) and filtering the noisy parts.

Noise Definition - We will call disjoined chain a ordered succession of hyper-
edges disconnected two by two and build on some adjacent pixels. A disjoined
chain is thin if the cardinality of each hyperedge is equal to 1. To model a noise
we propose the following definition:

We say that Eα,β(x) is a noise hyperedge if it verifies one of the two conditions:

– The cardinality of Eα,β(x) is equal to 1 and Eα,β(x) is not contained in
disjoined thin chain having five elements at least.

– Eα,β(x) is an isolated hyperedge and there exists an element y belonging to
the open neighborhood of Eα,β(x) on the grid, such that Eα,β(y) is isolated.
(i.e. Eα,β is isolated and it has an isolated hyperedge in its neighborhood on
the grid).

This definition allows a good discrimination between edge pixels and noisy pixels.
The lemma below shows that a noisy hyperedge must be isolated.
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Lemma 1. If the cardinality of a hyperedge is equal to one, then this hyperedge
is isolated. (For the proof report to [6]).

With the noise definition above, a noise detection algorithm is simple. The
IANH is built and all the hyperedges satisfying the conditions of the noise def-
inition are selected. This selection is separated in two step, first the detection
of the isolated hyperedges and then, in the set of the isolated hyperedges, the
detection of the noisy hyperedges.

Algorithm: Noise Detection
Data: Image I of size mx ×my, IANH Hα,β .
Determination of isolated hyperedges of Hα,β

For each vertex x of Hα,β , do ;
E

′
x =

⋃
y∈Eα,β(x) Ey;

If E
′
x == Ex, (Ex is an isolated hyperedge) then

If Cardinality of Ex is equal to one then
ISO[x] = Ex;

Else
IS[x] = Ex;

end if
end if

end for
Detection of noise hyperedges of Hα,β

For each Ex of ISO[], do
For each Ey of ISO[], and x �= y do

For each Ez of ISO[], and x �= z and y �= z do
If y, z �∈ Γβ(x) then

NH[x] = Ex;
end if

end for
end for

end for
For each Ex of IS[], do

If there is y ∈ Γ o(Ex) such as Eα,β(y) ∈ ISO[] ∪ IS[], then
NH[x] = Ex;

end if
end for

End

Data Structures Used: The data structures used for the IANH and its hy-
peredges are the same that in the IANH construction algorithm. The sets ISO,
ES and NH are some mx ×my tables of hyperedges.

The complexity of this algorithm is in O(n3). This algorithm has been tested
on several images in order to show how effective our method is. This method
has a great advantage over the class of linear filters; it preserves the edges, so
the additional complexity provides some additional results. Some experimental
results can be found in [6]. Some visual examples are shown in figure 2.
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Natural image Image corrupted Noise detection

Fig. 2. Example of IANH-based noise detection and cancellation

5 Segmentation

One of the first major step of low level vision is segmentation. Segmentation is the
process which consists in partitioning an image into some non-intersecting regions
such that each region is homogeneous and that the union of two adjacent regions
is never homogeneous. The algorithm below will give us the segmentation of an
image. This algorithm is based on the detection of stars in the hypergraph model.

The algorithm process can be divided into in two main parts. In the first part,
a covering of the image by a minimal set of stars is computed. In the second
part, selected stars are aggregated to obtain the regions. This regions are the
segments of the image.

Natural image Segmentation

Fig. 3. Example of IANH-based image segmentation

Algorithm: Covering and Selection for Segmentation
Data: Image I of size mx ×my, IANH Hα,β .
Choosing a cover of the image by a minimal set of stars.

Chose a minimal cover of the image, E = {H(x1), H(x2), . . . H(xn)},
such that any pixel of the image belongs to at most one hyperedge
of at least one star of the set E.
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Building aggregate areas.
For each H(xi) in E, do

I(xi) = grey level of the center of the star H(xi);
Aggi = ∅ (initialization on a new aggregation area)
For each H(xj) intersecting with the star H(xi), do

If I(xj) in [I(xi)− α, I(xi) + α], then
Aggi = Aggi ∪ (vertices of H(xj) ∪H(xi));

end if
end for

end for
Reducing the number of areas.

For each aggregate area Aggi, do
gi = center of gravity of Aggi;
mini = minimum grey level of the centers of the stars of Aggi;
maxi = maximum grey level of the centers of the stars of Aggi;
medi = medium grey level of the centers of the stars of Aggi;

end for
For each aggregate area Aggi, do

For each area Aggj intersecting with Aggi, do
If gi or gj is in Aggi ∪Aggj ,
and mini in [minj − α, minj + α],
and maxi in [maxj − α, maxj + α],
and medi in [medj − α, medj + α], then

Aggregate Aggi and Aggj ;
end if

end for
end for

Assigning each star to an aggregation area to obtain a partition.
Chose the area Aggi containing the greatest number of stars

For each star H in Aggi, do
Assign the star H to Aggi;
For each aggregate area Aggj �= Aggi, do

Remove H from Aggj ;
end for

end for
Repeat chose until all the stars have been assigned.

Assigning the pixels generating edges
For each pixel x in I, do

If x in several stars, then
assign x to the area of the star center whose grey level is the closest

end if
end for

Finally, the pixels lefts are assigned to the area of the neighboring pixel which
has already been assigned, and whose grey level is the closest.
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Data Structures Used: The sets E is a mx ×my tables of hyperedges struc-
tured as the IANH in the other algorithms. Each aggregate area Aggi is a list.
The set of all the aggregate areas is also a list.

Visual example can be see in figure 3. Experimental results can be found
in [1].

6 Edge Detection

Another important aspect of image analysis is the edge detection. In a grey
level image containing homogeneous objects, an edge is a boundary between two
regions of different constant grey levels. If the difference is clear-cut between
regions we have ideal edges. But there are several factors that degrade edges,
such as noise or irregularities of the surface. An effective method for detecting
edges must be based on an adequate definition of these edges.

Let H be a hypergraph, we will call triangle an intersecting family of three
hyperedges without common vertex. A triangle intersecting family (TIF) is an
intersecting family which is not contained in a star. This means that the set of
hyperedges family of a TIF do not share a common vertex.

Theorem 1. Let H be a hypergraph and let IF = {E1, E2, . . . Ek} be an
intersecting family. This family is a TIF if and only if IF contains a triangle.
(For the proof report to [2]).

Proposition 2. Let I be an image and Hα,β =
(
X, Ex = ({x} ∪ Γα,β(x))x∈X

)
be its INAH. Hα,β is isomorphic to H∗

α,β. (For the proof report to [2]).

We will said that a pixel (x, I(x)) belongs to edges if it belongs to a triangle
of Hα,β . So we can define an algorithm for detecting edges in an image. This
one is based on three steps: (1) Construction of the line-graph of Hα,β with
β = 1 (Algorithm: Line-graph). (2) 3-cliques detection in the line-graph. This
step gives us the intersecting family of hyperedges in the image hypergraph
(Algorithm: Detection of 3-cliques). (3) Test if the 3-cliques stand for a triangle
in Hα,β (Algorithm: Hypergraph triangle test).

All the pixels that belong to triangles in the third step of the algorithm
correspond to the image edges. The following algorithm constructs the line-
graph of the Image Adaptive Neighborhood Hypergraph. It easy to see that its
complexity is O(n3) where n is the pixel’s number.

Algorithm: Line-Graph.
Data: Image I, Image Adaptive Neighborhood Hypergraph Hα,β .
Construction of the vertice’s set of L(Hα,β)

For each hyperedge Ex of Hα,β , do
V (x) = ex;

end for
Construction of the edge’s set of L(Hα,β).

For each hyperedge Ex of Hα,β , do
For each pixel y of Ex, do
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For each pixel z �= y of Ex, do
If BE[yz] = false, then

E[xy] = {ex; ey};
BE[xy] = true;

end if
end for

end for
end for

End

Then we must detect the 3-cliques. The edge number of L(Hα,β) is in O(n)
and there are n vertices, so the complexity of this algorithm is in O(n2).

Natural image Edge detection                        

Fig. 4. Example of IANH-based edge detection

Algorithm: Detection of 3-Cliques.
Data: Line-graph L(Hα,β).
For each edge E[xy] of L(Hα,β), do

For each vertex z of L(Hα,β), and z �= x, y do
If BE[xz] = true and BE[yz] = true, then

T [xyz] = {ex, ey, ez};
end if

end for
end for
End

Finally we have to test if the 3-cliques stand for a triangle in Hα,β . The tri-
angle number of L(Hα,β) is in O(n3), so the complexity of this algorithm is in
O(n3).

Algorithm: Hypergraph Triangle Test.
Data: Image Adaptive Neighborhood Hypergraph Hα,β and set of triangle T [].
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For each triangle T [xyz], do
If Ex ∩ Ey ∩ Ez = ∅ then

edges[xyz] = {x} ∪ Γα(x) ∪ {y} ∪ Γα(y) ∪ {z} ∪ Γα(z);
end if

end for
End

The method has been tested on a set of images. The results of our algorithm
have beeen compared with the classical Canny-Deriche filter. Our method gives
more meaningful edge maps and looks promising and more robust. Some visual
examples are shown in figure 4.

7 Conclusion

Hypergraph-based image representation, as shown in this paper and in a lot of
publications [1, 2, 4, 6], can be used for low-level treatment and gives some good
results, only counterbalanced by the high complexity of the corresponding algo-
rithms. Such representation is not limited to segmentation, edge detection and
noise cancellation. Very wide perspectives are opened by the use of hypergraphs-
based models. By example, loseless and lossy picture compression can be per-
formed with an appropriate hypergraph-based picture representation, as shown
in [3]. In fact hypergraphs are very promising tools and can be applied in many
other images process. Further works will be focused on:

– Conception of algorithms in high level image processing using hypergraphs
(by example for shape recognition).

– Hypergraph-based compression for 3D images.
– Hypergraph-based entropy on 2D and 3D images.
– Generalisations of the IANH for 3D images, generalisation inducing some

segmentation, edge detection and noise cancellation algorithms on 3D im-
ages.
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Abstract. We present a broad algorithmic framework for transforming an 
image comprised of pixels into a vectorized image segmented into polygons 
that can be subsequently used in image processing and understanding.  A digital 
image is processed to extract edge pixel chains and a constrained Delaunay 
triangulation of the edge contour set is performed to yield triangles that cover 
the pixelated image without crossing edge contours.  Each triangle is attributed 
a color by a Monte Carlo sampling of pixels within it.  A combination of rules, 
each of which models an elementary perceptual grouping criterion, determines 
which adjacent triangles should be merged. A grouping graph is formed with 
vertices representing triangles and edges between vertices that correspond to 
adjacent triangles to be merged according to the combination of grouping rules. 
A connected component analysis on the grouping graph then yields collections 
of triangles that form polygons segmenting and vectorizing the image.  

1   Introduction 

1.1   Background 

Image segmentation is a critical processing step in the automation of image 
understanding by computers.  Broadly speaking, image segmentation is analogous to 
the process of perception in human vision which does not assume a priori knowledge 
of the objects in an image; rather, it uses spectral and structural cues in an image to 
parse the image into visually distinct parts. Segmentation consists of decomposing an 
image into regions corresponding to features and objects that define the semantic 
content of the image.  Image segmentation sets the stage for object detection and 
recognition by providing a higher-level representation of an image in terms of regions 
of uniform color/intensity and structural relevance. Objects in images are typically 
contiguous subsets of such regions.  Thus, image segmentation transforms an image 
from a low-level pixel-based representation to an intermediate-level region-based 
representation that enables the piecing together of the jigsaw puzzle of regions into 
individual objects of the image. Several segmentation methods have been developed 
over the decades, most of which can be classified into one of two categories, namely 
methods that start with pixels as feature primitives (e.g., [1]) and group them based on 
their spectral and textural cohesiveness into regions, and methods that start with 
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edgels (edge elements) detected in images as feature primitives (e.g., [2]) and seek 
good continuations and closures of groups of these edgels to obtain contours of form. 
While these two approaches have yielded some of the best results to-date, they are far 
from perfect. In particular, they can lead to erroneous groupings. The first approach, 
by focusing on regional uniformities, can result in false edges, while the second 
approach, by not taking into account the regional correspondences of edges, can result 
in false continuations and hence false regions.  

1.2   Motivation 

Cognizant of the inextricable duality of image regions and their contours, and 
therefore the impossibility of extracting complete information of either aspect of 
images independent of the other, we adopt a hybrid region-contour approach. In 
particular, we seek an image feature primitive that is well adapted to the region-
contour duality of the segmentation process.  

One of the ultimate goals of image segmentation is the delineation of shapes of 
objects in images for purposes of object recognition and, eventually, image 
understanding. Two important descriptors of a shape are its contour and skeleton. A 
shape’s skeleton provides regional information about the shape. A well-known 
characterization of a shape’s skeleton is its medial axis transform (MAT) [3]. The 
MAT of a shape with uniformly sampled contour is closely related to the generalized 
Voronoi diagram [4] of the contour points, which is the geometric dual of the 
constrained Delaunay triangulation (CDT) [4] of the planar straight line graph defined 
by the shape contour. In earlier works [5, 6] we derived the chordal axis transform 
(CAT) as a useful variant of the MAT for discrete shapes solely from the CDTs of 
discretized shape contours. The non-boundary edges of triangles of a discrete shape’s 
CDT are transverse to the shape’s skeleton. Such edges relate contour points that are 
across from each other with respect to the skeleton, providing a regional binding of 
contour elements. The vertices of a triangle in a discrete shape’s CDT define an 
elemental region interior to the shape, providing a contour binding of regional 
elements. Thus the triangles of a shape’s CDT are well suited as feature primitives 
that capture the region-contour correspondence of shapes.  

In this paper we extend this notion to images by obtaining the CDT of the planar 
straight line graph consisting of chains of edge pixels resulting from an edge detection 
process. The triangles so obtained are additionally attributed the average color of the 
pixels in their interior. We refer to these attributed triangles as TRIangular eXcision 
ELements or trixels, so called because the image will be excised or cut along certain 
edges of the trixels to obtain polygonal segments. The trixels of an image are then 
region-contour feature primitives that form a complete and irregular tiling of the 
image that is adapted to the edges of the image. Trixels combine the properties of 
both pixels and edgels. They behave like pixels insofar as they are the regional units 
of uniform color. They behave like edgels insofar as their edges are either a priori 
image edge units obtained from edge detection, or are candidate edge units that later 
may serve to connect two edge chains in the process of segmentation. In what 
follows, we will use this trixel representation of images to achieve polygonal image 
segmentation and vectorization. We note that constrained triangulations of contour 
sets have been used by others [8, 9] to obtain regional decompositions of images. 
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However, we explicitly exploit the region-contour duality property of constrained 
Delaunay triangulations for modeling perceptual grouping to perform region-contour 
inferences that yield visually faithful regional segmentations and contour completions 
in images [7]. 

2   The Framework 

2.1   Outline 

Briefly, in our approach, contours comprised of pixel chains are extracted from a 
digital image (Fig. 1) via an edge detection algorithm such as the Canny edge detector 
[7] and used as an initial incomplete set of feature constraints (Fig. 2). A constrained 
Delaunay triangulation [11] is applied to the planar straight line graph defined by 
these contours (Fig. 3), with the resulting triangle vertices anchored at contour pixels 
and with no triangle edge crossing a contour. The image region under each triangle is 
sampled using a Monte Carlo technique to estimate the color of the triangle (Fig. 4).  

  

Fig. 1. Input image Fig. 2. Canny edge contours 

Remark 2.1.1. It is reasonable to expect a nearly uniform coloration of each triangle’s 
underlying pixels, as a significant variation would have created edges within the 
region leading to a different contour set, and hence triangulation, than the one at hand.  

Triangles are attributed their estimated color and termed trixels. The trixels form a 
complete irregular tessellation of the image that conforms to the image’s detected 
edge structure. They are the new hybrid region-contour feature primitives comprising 
the image.  
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Fig. 3.  Delaunay triangulation of contours  Fig. 4.  Monte Carlo sampling of triangle 
colors 

The edges of trixels act as region separators as well as contour connectors. 
Specifically, whenever a trixel edge is deleted, two region elements are connected 
into a single region element. Likewise, whenever a trixel edge is retained, two 
contours are connected into a single contour with the retained trixel edge serving as 
the interpolating contour element. The trixel edges thus act as switches that explicitly 
model and control the region-contour duality in the segmentation process. We draw 
upon certain elementary notions in perceptual organization, such as spatial proximity, 
continuity, spectral proximity, etc., as evidenced in human vision [12] to develop 
trixel grouping criteria that determine whether a trixel edge should be retained or not. 
While each of these grouping criteria weighs in on the fate of an edge, it is a 
combination of these criteria that finally determines the edge’s retention or deletion. 
We note that the proximity and region-contour duality properties embodied by 
Delaunay triangulations allow perceptually meaningful continuations and completions 
of contours. This is not generally true of other triangulations. A trixel grouping graph 
with vertices representing the image’s trixels is created, with edges connecting 
vertices corresponding to trixels whose common edge has been deleted by the 
combination of grouping criteria (Fig. 5).  

Remark 2.1.2. This graph is, in essence, the skeleton of the inter-contour image space 
that has been segmented due to the retention of certain edges by the combined actions 
of the grouping criteria. The connected components of this graph therefore correspond 
to the skeletons of the segmented regions of the image. 

Connected components of the trixel grouping graph are obtained via a graph 
traversal algorithm. The connected components yield agglomerations of pairwise-
adjacent trixels that form polygonal segments of the image. Furthermore, the trixels of 
each connected component are assigned the average color of the trixels in that 
component. These polygonal region segments conform to the image edges as well as 
to the spectral uniformity of image regions (Fig. 6). 
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Fig. 5.  Trixel grouping graph showing 
connected components 

Fig. 6.  Polygonal segmentation of input 
image 

2.2   Discussion of Key Stages 

Edge Detection. There are many methods for extracting edge pixels from images that 
may be employed in our algorithm framework. However, we prefer the Canny edge 
detector [10] because of the quality of edges it generates and the options it allows for 
varying the edge properties. 

Contour Chain Extraction. The edge detection process yields a binary image 
consisting of edge pixels. To this we add all pixels on the boundary of the image as 
edge pixels. We then obtain contour chains by iteratively traversing contiguous edge 
pixels. Each contour chain is attributed a contour chain number, with all points in it 
inheriting this number. 

Constrained Delaunay Triangulation. The planar straight line graph consisting of 
contour chains is subjected to a constrained Delaunay triangulation (CDT) [11]. This 
decomposes the image area into triangles that are anchored at vertices of the contour 
chains without any of the triangle edges intersecting the contour chains. The triangle 
edges may, however, coincide with edges of the contour chains.  

Trixel Definition.  As mentioned before, trixels are color-attributed triangles. The 
interior of each triangle is randomly sampled a few (say 5 to 10) times, to obtain an 
efficient and reliable estimate of average color of the underlying image pixels. In our 
experience, increasing the number of samples or considering all pixels in a triangle 
does not improve the estimation significantly. The triangle is explicitly attributed this 
average color to yield a trixel. The trixel also has other, implicit, attributes: since the 
trixel is geometrically specified by vertices, and vertices inherit the contour chain 
index attribute, the trixel contains information of what pairs of contour chains its 
edges connect. It also has information about its neighboring trixels via its edges and 
the triangulation. 
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Trixel Edge Attribution. Edges of trixels separate regions as well as connect 
contours. Thus edges serve as gates whose opening and closing execute the 
segmentation process in our framework. Edges are specified by their vertices which 
are attributed the indices of the contour chains they belong to. In addition, edges are 
attributed the indices (and hence the colors) of the two adjacent trixels they separate. 
These attributes help decide which edges should be retained as contour connecting, 
region separating elements. The set of all trixel edges that belong to two trixels will 
be subject to filtering, resulting in trixel groupings.  

Perceptual Edge Properties. We model certain elementary perceptual cues via 
Boolean filters on edges. These cues, combined via Boolean expressions, yield 
composite edge filters that selectively retain edges to achieve image segmentation. 
We briefly describe some exemplary Boolean edge filters in Table 1. Four broad 
classes of perceptual cues are employed here, namely spatial proximity, spectral 
proximity, contour continuity, and region continuity. Each Boolean filter identified 
below characterizes a perceptual cue or the negation of it. The action of each Boolean 
filter on the edge list results in a Boolean vector with a ‘1’ in the ith position if the ith 
edge satisfies the property modeled by the filter, and ‘0’ otherwise. 

Table 1. This table indicates the type of perceptual cue, the name of the Boolean filter 
addressing the cue, the filter’s support of the cue (i.e., whether it affirms or negates the cue) and 
a brief description of the condition to be satisfied by the edge for the filter to take the value 1  

Type Name Support Description 

TooLong - 
Length above a threshold (e.g., 2.5 times 
median triangle edge length) 

NotShortest - Shortest edge of neither flanking trixel 

Spatial   
proximity 

 
Longest - Longest edge of at least one flanking trixel 

Spectral  
proximity  

NearColor + 

Scaled intensities of flanking trixels  are 
within threshold distance for intensity 
images, or inner product of unit RGB vectors 
of flanking trixels is within threshold 
distance of 1 for color images 

Canny + Coincides with a contour chain edge 

EndLink1 + 
Connects (with minimum turn) end point of 
a contour to the interior of another contour 
(transversality) 

Contour- 
continuity  

EndLink2 + Connects two  contour endpoints  

SameContour + 

At least one flanking trixel has all its vertices 
lying on the same contour chain, and at least 
one vertex of the edge is not a contour end 
point 

Just2Contours + 
At least one flanking trixel has all its vertices 
on one of two contours and at least one 
vertex of the edge is not a contour end point 

Region  
continuity  

Junction - 
At least one flanking trixel has all its vertices 
on different contours 
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Remark  2.2.1. It is possible to model many other perceptual cues via Boolean edge 
filters such as the ones presented in Table 1. In this paper, however, we have 
restricted ourselves to only the above few for simplicity and brevity of presentation. 

Trixel Edge Filtering. Each of the filters listed in Table 1 models a pure criterion 
that determines the retention or deletion of edges in the absence of other criteria. 
Realistically speaking, however, all such criteria jointly come into play and a 
composite of these criteria ultimately decides whether an edge is retained or deleted. 
This is motivated by analogy to the human perceptual process wherein multiple 
perceptual organization criteria determine visual perception. We model this composite 
edge filter as a Boolean expression in the elementary edge filters. An example of a 
composite filter C is  

C = ( TooLong | ( NotShortest & ~EndLink2 ) | Longest | NearColor | …  
            … SameContour | Jus2Contours  | ( Junction & NotShortest ) ) &… 
     ~( ~TooLong & ( Canny | ( ( EndLink1 | EndLink2 ) & ~Longest) ) );  

(1) 

There are many variations that produce satisfactory segmentation results. For 
example, a composite filter that does not use spectral proximity to group trixels is 
given by 

C = TooLong | ~(Canny | EndLink1 | EndLink2 | (Junction & ~(NotShortest | 
… Longest) ) ); 

(2) 

An edge for which the filter C takes the value 1 will be deleted, merging the two 
trixels flanking the edge. Thus the action of C on the set of all trixel edges results in 
mutually disjoint polygons, comprised of pairwise adjacent trixels, tiling the image. 

The formulation of composite filters that are optimized to some measure of 
segmentation quality, that are adapted to a class of imagery (such as IR, X-ray, etc), 
or that are tuned to segment certain features, are all challenging problems. The 
algorithm presented here provides a general framework for developing improved and 
specialized segmentation algorithms to address these problems. For instance, it is 
possible to define elementary edge filters that take on continuous values. These filters 
can then be combined using fuzzy, neural, or evolutionary learning formalisms to 
yield high quality segmentation algorithms. In this sense, our algorithmic framework 
is a master algorithm template for image feature synthesis.  

Analyzing the Trixel Grouping Graph. We represent the image trixels as vertices of 
a trixel grouping graph, with an edge between two vertices corresponding to adjacent 
trixels. It is easy to see that this graph is planar. An edge between two vertices is 
given the weight 1 if they represent adjacent trixels whose common edge is marked 
for deletion by the composite edge filter C. The remaining edges of the graph are 
given the weight 0. The edge-weight-1 connected components of this grouping graph 
correspond to contiguous sets of pairwise adjacent trixels that form polygonal image 
segments. This characterization of the grouping graph is slightly different from what 
we have alluded to earlier in this paper for simplicity of exposition, where edges 
connected only those vertices that corresponded to adjacent trixels whose common 
trixel edge was deleted by the composite perceptual grouping filter. The connected 
but edge-weighted trixel grouping graph described here later allows the creation of a 
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higher level quotient graph for further grouping of segmented regions. Thus graph-
representations provide a natural and elegant paradigm for obtaining an irregular 
pyramidal hierarchy of successively higher order features and their interrelationships, 
as well as efficiently perform groupings using a rich lore of graph algorithms. 

We use a depth-first-search traversal of the grouping graph to extract 
agglomerations of trixels that form the segments. All trixels of the same edge-weight-
1 connected component are attributed a common component number. The edge-
weight-1 subgraphs of the segments of the trixel grouping graph yield skeletons of the 
segments. The fact that the vertices represent Delaunay triangles is additionally 
helpful in characterizing the segment’s shape via attributed skeletons such as the CAT 
[5, 6]. It also assists in readily and efficiently computing useful physical attributes 
such as area, average local diameter, perimeter, and genus (i.e., number of holes) of 
the segment for measuring feature saliency and recognizing objects. All the trixels 
belonging to a segment are reassigned the average color of the trixels in the segment. 
Thus the segment gets a uniform color attribute and the image is segmented into 
polygonal regions. 

Image Vectorization and Compression. The polygonal segmentation thus obtained 
can be represented as a vector image by specifying the contour of each polygon along 
with its fill color. This gives a scalable representation for flexible rendering [7]. In 
fact, we have implemented a vectorized representation using the SVG (scalable vector 
graphics) standard proposed by the World Wide Web Consortium (W3C). Our 
segmentation scheme, apart from providing useful structural information of image 
features for image understanding, yields images of good visual quality (Fig. 7). In 
addition, the polygonization yields, on an average, a lossy image compression (for 
JPEG images) ratio of ~ 1:4. This makes it an attractive method for web-based and 
low-bandwidth communication applications. 

Grouping Polygons into Objects. Following segmentation of the image into 
polygons, new, higher order perceptual criteria may be defined based on shape, 
contour, and color relationships of adjacent polygons. A segment grouping graph can 
be defined as the quotient graph of the trixel grouping graph with respect to the edge-
weight-1 connected subgraphs obtained above. The higher order perceptual criteria 
may then be used to weight this quotient graph’s edges (which are quotients of the 
weight-0 edges in the trixel grouping graph) and group segments into larger polygons 
corresponding to objects, features, or textures by edge-weight-based traversals and 
strong component extractions on the graph. For instance, based on similarity of hues, 
directionalities, and areas, a group of polygonal segments corresponding to blades of 
grass in a segmented image containing a lawn may be grouped into a single region of 
texture. A detailed discussion of such higher order grouping is outside the scope of 
this paper. We limit ourselves to the illustration of a simple example of grouping of 
segments by hue in Fig. 8. 

Computational Issues. The Canny edge detector is a fast linear algorithm whose 
computational time complexity is a linear function of the total number of pixels in an 
image.  Contour chaining is linear in the number of detected edge pixels which is 
typically an order of magnitude smaller than the total number of image pixels. 
Constrained Delaunay triangulation runs in o(n.log(n)) time as a function of the 
number n of contour points which is less than (in case of subsampling)  or equal to the  



L. Prasad and A.N. Skourikhine 

 

20 

  
Original JPEG image (259 KB) Vectorized segmentation (61 KB) 

  
Original JPEG image (365 KB) Vectorized segmentation (160 KB) 

  
Original JPEG image (37 KB) Vectorized segmentation (11 KB) 

Fig. 7. Sample JPEG images and their vectorized segmentations via trixel grouping 

 

    

Fig. 8. A JPEG image, its vectorized segmentation, and grouping of segments by hue 
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number of edge pixels. The Monte Carlo sampling of triangle intensities is linear in 
the number of trixels, which is at most twice the number of contour points. Connected 
component analysis of the planar grouping graph is linear in the number of trixels as it 
uses a depth-first-search traversal. Thus the overall efficiency of our algorithm is 
high, making the method well suited for real-time applications. 

3   Summary and Perspectives 

We have briefly presented an algorithmic framework for segmenting images based on 
hybrid region-contour properties of constrained Delaunay triangulations of image 
edges. A key novelty is the geometric modeling of empirically observed elementary 
perceptual organization criteria, as evidenced in human vision, to perform 
segmentation. The application of the perceptual criteria to the triangle feature 
primitives results in cuts in the skeleton graph of the regions bounded by image edges. 
A connected component analysis on the excised skeleton graph yields perceptually 
meaningful polygonal segmentation of images.  

While the basic criteria of perceptual organization have been known for a long 
time [12], the mechanism of their interactions in the process of perception is largely 
unknown. In conjunction with optimization and learning formalisms such as fuzzy 
logic, neural networks, and evolutionary algorithms, our framework offers a flexible 
paradigm to explore these interactions and construct useful perceptual filters.  

It is quite likely that there is no single mode of interaction of the basic perceptual 
criteria that is applicable to all images, or even to the same image in all locations. A 
more plausible scenario is that there are a finite set of “legitimate” interactions that 
may be characterized by a library of composite filters C, with a different C required in 
different parts of an image to obtain a perceptually most meaningful segmentation. As 
part of our ongoing work we propose use the framework described in this paper to 
construct and employ multiple composite perceptual filters C as local constraints in 
the minimization of cost functions, such as the Mumford-Shah functional [13] for 
segmentation. Our goal is to reduce the solution search space as well as obtain 
spatially adaptive perceptually meaningful segmentations.  The success of our effort 
will lead to the development of a new generation of segmentation algorithms that are 
better adapted to real-world imagery and specialized classes such as X-ray, infrared, 
and medical imagery. 
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Abstract.  Graphs and graph transformation are versatile tools for representing 
and interpreting the contents of document images. Three main components are 
involved: a graph representing the contents of a document image at some level 
of interpretation, a set of graph transformation rules (graph productions), and a 
mechanism for controlling the application of the graph productions.  We review 
existing document analysis systems that use graph transformation, and discuss 
challenges and research opportunities in this area.  

1   Introduction 

Graph transformation has been used in a variety of document image analysis 
applications. In these applications, a document image is processed to produce an 
initial graph, representing the image primitives and the relations among the 
primitives. Nodes and edges can have labels (also called types). Auxiliary information 
is stored as attributes associated with nodes or edges.  The distinction between a label 
and an attribute is as follows. Labels are part of the structure of the graph: labels must 
match in order for graphs to be considered isomorphic. In contrast, attributes contain 
information which is not part of the graph structure: attribute values are ignored 
during isomorphism testing.  This is illustrated by an example. Bunke [Bunk82] 
converts a circuit diagram to an initial graph by representing the lines in the circuit 
diagram: each graph node represents a line endpoint, corner, or intersection, and node 
attributes record the (x, y) image coordinates of this feature.  The node label is the 
degree of the node (1 for an endpoint, 2 for a corner, 3 for a T intersection).  Due to 
this definition of node labels, subgraph isomorphism always matches an endpoint 
node to another endpoint node, never to a corner node or intersection node.  However, 
the (x, y) image coordinates are ignored during the subgraph isomorphism test, 
because these coordinates are stored as attributes. 

Graph productions (also called graph transformation rules) are used to inspect and 
update a host graph.  A graph production specifies how to update a host graph by 
replacing one subgraph by another. Many different notations and terminology have 
been used for graph productions. The following exposition uses a minimum of 
notation in order to increase readability. More formal presentations, using set theory 
and category theory to model the semantics of graph replacement, are described in 
[Hand97] and [ICGT].  A graph production specifies: (1) conditions for production 
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application, including conditions on the structure of the subgraph that will be 
replaced, (2) the form of the replacement subgraph, (3) the method of computing 
attribute values for the replacement subgraph, and (4) the method of attaching the 
replacement subgraph to the rest of the host graph. 

Two main approaches have been taken in applying graph transformation to 
document image analysis [Blos98]. 

• The Parsing Approach  
 Parse the initial graph according to a graph grammar.  The interpretation of the 

document is provided directly by the parse tree, or is created as a byproduct of 
parse-tree construction.  The Parsing Approach is discussed in Section 2. 

• The Transform Approach  
 Transform the initial graph into a final graph by application of graph productions.  

The final graph represents the interpretation of the document image. The 
Transform Approach is discussed in Section 3. 

A lengthier informal introduction to graph transformation is provided in [BlSc99].  
Thorough treatments of graph transformation are provided by [Hand97] and [ICGT]. 

We cannot expect simple solutions in using graph transformation (or any other 
approach) for document recognition.  Document recognition is complicated, involving 
large amounts of expertise in various areas such as image processing, segmentation, 
symbol recognition, document layout, document syntax and document semantics.  
Graph transformation is an appealing approach that has been successfully used in 
small-scale systems for document image analysis.  It remains to be seen whether these 
approaches scale up.  Section 4 discusses challenges in the use of graph 
transformation. 

2   The Parsing Approach 

A graph grammar consists of a start graph and a set of graph productions.  The graph 
grammar defines a language of graphs, consisting of all graphs that can be generated 
by applying sequences of productions to the start graph.  For document analysis 
purposes, graph grammars provide a convenient way of enumerating constructs that 
can occur in a document (Section 2.1), or they can be used to analyze document 
syntax (Section 2.2) or delineate regions containing repetitive patterns (Section 2.3). 

2.1   Graph Grammar to Enumerate Document Constructs 

Dori et al. use a graph grammar to describe the syntax of dimension sets in 
engineering drawings [DoPn88] [Dori89]. An engineering drawing depicts the 
structure of a physical object, often using several orthogonal views.  The dimension 
sets in an engineering drawing define the distance or angle between two points or 
lines on an object.  Dimension sets can be drawn in many ways.  The graphic 
components of a dimension set include text, shape, tail, contour, arrowhead, and 
witness line.  These components form the terminal symbols of the graph grammar.  
Line descriptors are used to provide a compact description of the following line 
attributes: Geometry (straight, circular, or broken), Length (long, short, or zero), Font 
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(continuous, dash, or dash-dot), Width (wide, narrow, or zero), and Number of 
Arrows (zero, one, or two). The graph grammar is small and non-recursive. 
Approximately 10 graph productions suffice to generate (or parse) virtually all of the 
dimension-sets which can occur in machine drawings.  The grammar is adapted for 
use in the Machine Drawing Understanding System (MDUS).   

2.2   Graph Grammar to Produce a Parse Tree 

Lavirotte et al. use a graph grammar to efficiently parse mathematical notation 
[LaPo97] [LaPo98] [KRLP99].  The initial graph encodes the relative positions of 
symbols. As illustrated in Figure 1,  parsing creates graph nodes that contain abstract 
syntax trees of the recognized formulas.  The parser operates bottom-up, without 
backtracking.  The absence of backtracking is achieved because graph productions 
have carefully-constructed application conditions that allow the parser to uniquely 
determine which graph production to apply next, in cases where two different 
productions might apply to the same node.  This process relies on the availability of 
accurate point-size information, which allows local identification of subscript and 
superscript relations.  For example, point size can be used to decide whether the 
configuration xi is a subscript (as in the expression xiyi) or whether the spatial 

relationship is a byproduct of other operators (as in the expression axi). As a result, 
the graph grammar uses simpler, more efficient interpretation strategies than are used 
in Grbavec’s approach [GrBl95] discussed in Section 3.  Lavirotte’s work inspired the 
graph grammar used in the math recognition system by Smithies et al. [SmNA01]. 
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Fig. 1. These two graph productions describe addition and exponentiation, used for bottom-up 
parsing of 2D mathematical notation [LaPo97].  Both productions apply to the host graph 
shown on the right.  To allow the parser to handle such situations without backtracking, 
productions have application conditions that identify the proper production to use in each case.  
These application conditions are defined during grammar construction, by analyzing all 
possible rule superpositions 
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Another application of document parsing is Amano and Asada’s use of a graph 
grammar to analyze table-form documents [AmAs02] [AmAs03]. A table-form is a 
fully-ruled form that contains a mixture of entry boxes (blank or partially-blank boxes 
which are to be filled with information) and description boxes containing text such as 
“Name” or “Total” to indicate what information should go into the entry boxes. The 
graph grammar produces a parse tree that describes the structure of the table-form, 
relating description boxes to the corresponding entry boxes. In the initial graph, each 
box in the table form is represented by a node, and edges connect adjacent boxes.  
Two-part edge labels are used, with one part encoding the direction (left, right, up, or 
down), and the other part encoding relative size of the boxes.  In the given example, 
56 meta-rules are used to generate 6745 graph productions; the large number of rules 
arises from the various possible combinations of edge labels and box relations. 

2.3   Graph Grammar to Recognize Tessellated Image Regions 

Sánchez et al. use a graph grammar to recognize textured symbols, such as hatched or 
patterned regions, in a technical drawing [SáLl01] [SáLT02].  Given a starting point 
in the image, the result of parsing can be failure (the texture does not occur here), or 
success, with delineation of the maximal patterned region that obeys the grammar.  
Recursive grammars are used, with numerous productions to describe the repetitive 
nature of the texture, the configurations that can occur at the border where the 
textured image region ends, and the configurations that can occur due to drawing 
imperfections. 

2.4   Infer a Graph Grammar to Verify Diagram Structure 

Sanfeliu and Fu define tree-graphs, tree-graph grammars, an parsers [SaFu83]. A tree-
graph is a type of hierarchical graph (Section 4.1.2).  The use of tree-graph grammars 
is illustrated by the verification of the correct structure of circuit diagrams: the circuit 
is represented as a tree-graph, and a grammar is inferred for it. 

3   The Transform Approach 

In the Transform Approach, an input graph is transformed into an output graph, by 
applying productions.  The ordering of productions is given by a control specification, 
which uses sequential, conditional, and looping constructs.  No parser is required, 
because the control specification indicates how to transform the initial graph into the 
final graph.  The term programmed grammar is also applied to this approach. 

Bunke introduced the Transform Approach, and illustrated its use in analyzing 
circuit diagrams and flow charts [Bunk82]. The input graph contains edges which 
represent line segments in the document image, and nodes which represent 
intersections and endpoints.  The output graph contains nodes which represent 
compound symbols such as transistor, capacitor and resistor.  Computation begins 
with graph productions which reduce noise in the input graph.  For example, one 
graph production closes small gaps in lines: it searches for two line-endpoint nodes 
that are separated by a small gap (using tests of the (x,y) node attributes), and closes 
the gap by removing the two line-endpont nodes.  After the noise-reduction 
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productions have been applied, other graph productions look for configurations of 
nodes which represent compound symbols, and replace these by a single node. 

Several authors have analyzed music notation using the Transform Approach. 
Fahmy et al. use a discrete initial graph [FaBl93], containing one node for each 
symbol in the image. Graph productions are applied in three phases. The Build phase 
adds edges that represent potentially interesting associations.  The Weed phase uses 
context to identify and remove edges that represent uninteresting or conflicting 
associations.  The Incorporate phase constructs the image interpretation, and deletes 
nodes and edges that are no longer needed. This Build, Weed, Incorporate 
organization is used repeatedly to produce the final graph, which specifies the pitch 
and duration of every note. Interactions among distant symbols must be analyzed, as 
when the pitch of a note is affected by an accidental earlier in the measure, or by an 
accidental in the key signature. This work assumes that correctly-recognized symbols 
are presented as input. Later work by the same authors introduces a generalized form 
of discrete relaxation, implemented via graph transformation [FaBl98]. Here, it is 
assumed that the symbol recognizer produces a set of possible identities for each 
symbol (possibly including noise). The symbol hypotheses are converted to an initial 
graph, with exclusion edges to indicate alternative interpretations. Contextual 
information, and constraints of music notation, are used to reduce the symbol-
recognition ambiguity and to construct an interpretation of the music notation. In the 
standard formulation of discrete relaxation, all of the constraints are known a priori. 
Here, in contrast, some of the constraints can be formulated only after partial 
recognition results are known. 

Baumann and Pies describe further work on music notation [Baum95] [Pies94]. 
They use a simplified type of graph production, to achieve high efficiency. Graph 
productions are restricted to having at most three nodes on either the Left Hand Side 
or the Right Hand Side, and edges are treated as node attributes, not as separate 
objects.  Seven types of productions are defined, to increase the variety of operations 
that can be expressed using this restricted form of graph production.  The production 
types, which are closely tailored to the application, are CD_START (start a control 
specification), LOCALIZE (apply productions to a subpart of the graph, where the 
subpart is defined relative to a tree structure imposed on the graph), DELOCALIZE 
(undo the effect of a previous LOCALIZE), REPLACE (replace the instance of LHS 
by the first node in RHS), GENERATE (keep the LHS instance and add the first node 
in RHS subject to various syntax conditions), ASSIGN (do not create new nodes, but 
possibly delete nodes), and REASSIGN (adjust the tree structure that is imposed on 
the graph).  A complete system was implemented for a subset of music notation. First, 
an image is processed to remove staff lines.  Next, each connected component is 
processed by a nearest-neighbour classifier, producing up to three hypotheses for 
which symbol is represented.  This provides the input to the graph transformation.  
Approximately 110 productions (not the complete set) are shown in [Pies94]. 

Grbavec et al. use graph transformation to analyze handwritten mathematical 
notation, which may contain poorly-aligned symbols [GrBl95].  A second 
implementation of this system, using the PROGRES graph-transformation language, 
is described in [BlSc99].  Graph productions are applied in recognition phases. 
Productions in the Build phase create edges between any nodes that may share a 
significant spatial relationship.  Productions in the Constrain phase examine graph 
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context in order to remove unneeded spatial relationships; this is the trickiest part of 
the computation, due to the possibility of mis-aligned symbols. Once the Constrain 
phase has identified the important spatial relationships, subsequent phases rather 
easily extract the structure of the mathematical expression. 

Rahgozar et al. use graph transformation to recognize the geometry and logical 
structure of tables [RaCo96].  The control structure provides a horizontal bias: a 
preference to apply horizontal rules rather than vertical rules reflects the empirical 
knowledge that most tables have a horizontal reading order. No backtracking is used.  
The authors state that an advantage of the graph-transformation approach is the ability 
to trade off generality and efficiency, due to the separation of entity recognition and 
graph transformation.  This table recognizer became part of a commercial product. 

4   Challenges 

Graph transformation is a powerful and versatile mechanism, but one that can be 
confusing and complex to use in a large-scale application.  In order to keep the system 
intellectually manageable, it is necessary to have a clear structure to the host graph 
(Section 4.1), as well as a clear approach to structuring and organizing the graph 
productions (Section 4.2). Since most document recognition applications involve 
noise or ambiguity, it is also necessary to have a means to represent and process 
alternative interpretations (Section 4.3).  Related discussion appears in [BlFG96]. 

4.1   Structuring the Host Graph 

4.1.1   Graph Schemas, and a Class Hierarchy of Node Labels 
A graph schema is a type declaration for a graph, defining node and edge labels, node 
and edge attributes, and connectivity restrictions.  Attributes can be any data type, 
such as integer, string, or graph.  Examples of connectivity restrictions are “nodes 
labeled X have a maximum degree k”, or “edges labeled Y may only connect to nodes 
labeled Z”. A compile-time or runtime error can be generated if application of a graph 
production produces a graph violating these constraints.  This is helpful for debugging 
the graph schema and graph productions. 

The graph schema may define a class hierarchy for node and edge labels.  For 
example, the graph schema in a math-recognition application (Figure 8 in [BlSc99]) 
defines that LowercaseLetter, AscendingLetter, and DescendingLetter have the following 
ancestors in the specialization hierarchy: LETTER, TERMINAL_OPERAND, 
OPERAND, OBJECT. Thus, when the graph schema declares an attribute for a 
TERMINAL_OPERAND, this attribute is inherited by LowercaseLetter as well.   

The label hierarchy plays an important role in the definition of graph productions, 
allowing nodes to be matched with greater or lesser specificity.  For example, a graph 
production can match for a specific node label, such as LowercaseLetter or Plus, or 
for a more general node label, such as OPERAND or OPERATOR.  An OPERAND 
node can match host graph nodes with labels such as Factor, Term, Base, and 
LowercaseLetter.  Thus, the author of a production is able to choose node labels that 
impose the desired level of specificity on the subgraph matching. 
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4.1.2   Hierarchical Graphs 
Hierarchical graphs provide a prominent representation of one or more hierarchies 
that are present among host-graph nodes.  (Here, we are talking about a hierarchy, 
such as  a “tree-backbone”, in the graph itself; this is quite distinct from the label 
hierarchy discussed in Section 4.1.1.)  In the layout of a hierarchical graph, node 
nesting is often used to depict the hierarchy visually; if multiple hierarchies are 
present, they can be distinguished through node shape, color, line type, or annotation 
[Hare88] [SiGJ93].  Internally, the hierarchical nature of the graph can be represented 
using edges with special labels, by collecting nodes into super-nodes [MaKl92], or by 
using labels that themselves are complex objects such as graphs [Schn93]. 

Only a few systems reviewed in Sections 2 and 3 make use of hierarchical graphs: 
tree-graphs [SaFu83] (see Section 2.4) and tree structure imposed on the host graph 
[Pies94] (see section 3).  Graph hierarchies help address the control problems 
discussed in Section 4.2.2: they provide a framework for traversing the host graph, 
and for delineating portions of the hostgraph that need further processing. 

4.1.3   (Non)Induced Subgraph Isomorphism: Brevity Versus Explicitness 
Two definitions of subgraph are in common use.  In induced subgraph matching, both 
presence and absence of edges must be matched.  In non-induced subgraph matching, 
only the presence of edges must be matched; Skiena uses the term vanilla subgraph 
for non-induced subgraph [Skie98]. The difference between vanilla and induced 
subgraph matching is illustrated in Figure 2. 

The choice between vanilla and induced subgraph matching has a big effect on the 
set of production rules needed to carry out a computation. If induced subgraph 
matching is used, then a large number of production rules are needed, to enumerate all 
possible combinations of edges involving LHS nodes. For example, to achieve the 
intended effect of rule (a) in Figure 2, use a set of rules that enumerates the various 
combinations of edges BA, BC, CB, and CA.  This enumeration can be cumbersome, 
particularly when new edge types are added to the host graph (see Section 4.1.4). On 
the other hand, if vanilla subgraph matching is used, a single rule suffices to cover all 
situations in which the host graph contains extra edges; however, care must be taken 
that these extra edges aren’t inadvertently lost, as in Figure 2(c). Also, edge absence 
(when it is desired) cannot be tested for by the LHS; instead, an explicit application 
condition must be used. 

4.1.4   Scaling Up: Effect of New Node/Edge Labels on Existing Productions 
As a document recognition system is developed, the developers need the ability to 
introduce representations for new kinds of objects and relations. In the case of a graph 
transformation system, this means adding new node and edge labels to the graph 
schema.  Special care must be taken to make sure that existing production rules 
continue to function in the presence of the new edge labels. There is a risk that 
production rule application will fail (in the case of induced subgraph matching), or 
that the new edges will be inadvertently deleted (in the case of vanilla subgraph 
matching).  This is a failure of modularity: the old production set works fine with the 
old graph schema, but extensions to the graph schema cannot be shielded from the old 
productions.  Perhaps a better way to address this problem can be found. 
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Fig. 2. Effect of induced versus vanilla (non-induced) subgraph matching.  Production rule (a) 
is being applied to host graph (b).  If induced subgraph matching is used, then the LHS of rule 
(a) does not match any subgraph of the host graph; therefore rule application fails and the host 
graph is left unchanged. In contrast, if vanilla subgraph matching is used, then a match is 
found: edges that are absent in LHS are allowed to be present in the host graph.  Using 
traditional semantics for graph productions, the subgraph that matches LHS is removed from 
the host graph, and is replaced by a copy of RHS.  (These are the LEARRE steps: Locate, 
establish Embedding Area, Remove, Replace, Embed [Roze87].)   The result is graph (c): the 
loss of the AC edge is explicit in the production rule, and the loss of the CB edge arises 
implicitly as a side effect of production application. Some graph transformation languages 
reduce this problem of implicit edge deletion by allowing nodes that occurs in both LHS and 
RHS to be preserved (rather than deleted and reinserted).  An edge that connects two preserved 
nodes is also preserved.  In this example, if nodes B and C are preserved, the result is graph (d): 
the host-graph edge between B and C is preserved even though it is not explicitly mentioned in 
LHS or RHS 

 

4.2   Organizing the Computation 

Document recognition is a complex computation.  In order to produce a scalable, 
maintainable solution, the computation must be organized in a clear, modular way.  
More work remains to be done in finding ways to organize large sets of graph 
productions.  A few ideas are mentioned here. 

4.2.1   Use of Passes 
A graph transformation can be organized into phases or passes.  Examples discussed 
in Section 3 include a pass for error correcting productions, followed by a pass for 
symbol-recognition productions [Bunk82], or Build, Weed, Incorporate passes for 
constructing and interpreting symbol associations [FaBl93].   

While a division into passes is helpful, care must be taken in choosing effective 
criteria for the division into passes.  In our personal experience, we found that the 
graph productions used in [GrBl95] were difficult to maintain.  Even with the 
organization into Build, Constrain, Rank, Incorporate phases, it remains difficult to 
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understand the dependencies between productions. For example, the control diagram 
requires that Constrain production B1 is applied exhaustively before production B2 is 
applied. Is this ordering restriction really necessary, or could be removed? Answering 
this question involves careful thought to find a particular example of math notation 
that is misanalyzed if production B2 is applied before B1.  Years later, we have 
concluded that one source of difficulty is that individual graph productions in 
[GrBl95] deal with a mixture of layout issues, syntax issues and semantics issues.  
Since then, we have experimented with a tree transformation approach that strictly 
separate the recognition of layout, lexical analysis, syntax, and semantics [BlCZ02]. 

4.2.2   Traversing Graphs; Graph Scopes 
Computations on graphs require constructs for keeping track of locations within the 
graph, for traversing graphs, and for creating and using graph scopes.  A scope 
delineates a portion of a graph; graph productions can be applied within a given scope. 

Most current graph transformation languages treat the host graph as a monolithic 
unit, with every graph production potentially applicable anywhere in the host graph.  
In such an environment, one can traverse a graph by marking nodes as visited (using a 
node attribute created for this purpose).  One can also keep track of a particular 
location in the graph by inserting a cursor node (e.g. [Gött92]).  These are low-level 
representational techniques that place a significant burden on the programmer.   

There is need for better language constructs to support graph traversal and scoping.  
Prototype implementation of such language constructs are presented in [ShBC98].  
Also, as discussed in Section 3, Pies uses REASSIGN  productions to (re)define a tree 
structure on the host graph, with LOCALIZE productions using the tree structure to 
define a subpart of the graph that later productions apply to [Pies94]. 

4.2.3   Efficiency Considerations   
Graph transformation can be computationally expensive for two reasons.  One reason 
is the time needed to apply a single production, searching the host graph to find a 
subgraph isomorphic to LHS.  The second reason is because there might be a large 
number of productions under consideration; this is particularly true of the pure 
parsing approach, in which all productions are under consideration at any time.   

The execution speed depends heavily on the characteristics of the graph 
productions, as well as on the control structures which invoke them.  While it is true 
that general subgraph isomorphism is an NP-complete problem, the LHS of a typical 
production is very small. The small size of the subgraph allows for fairly efficient 
application of a graph production, particularly when node and edge labels greatly 
reduce the search space. Many techniques can be used to optimize subgraph-
isomorphism testing [BuGT91] [Zünd96]. Also, parsers can be optimized to track 
changes in the set of applicable rules as productions are applied [BuGT91]. 

Even in cases where efficiency is critical, graph transformation can be a useful 
conceptual tool in the specification and design stages of a recognition system. 

4.2.4   Debugging 
Debugging graph transformation systems can be difficult.  It is a challenge to find 
effective ways of displaying a large host graph, and displaying the changes made to 
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the host graph as productions are applied. Graph schemas (Section 4.1.1) can help 
catch some errors.  More methods and tools are needed. 

4.3   Representing Alternatives and Uncertainty 

Document image analysis involves noise and ambiguity. A few graph-transformation 
approaches were mentioned in Section 3. One approach is to use error-correcting 
graph productions [Bunk82]; this works in cases where errors can be anticipated, and 
productions can be written to detect and correct the errors.  Another approach uses a 
generalization of discrete relaxation to create and evaluate alternative interpretations 
[FaBl98]. 

Fuzzy graphs could be used to represent uncertainty in recognition processes.  A 
taxonomy of fuzzy graphs [BlBP97] includes (1) a fuzzy set of crisp graphs, (2) a 
graph with a crisp vertex set and fuzzy edge set, (3) a graph with crisp vertices and 
edges, where the connectivity is fuzzy, (4) a graph with a fuzzy vertex set and crisp 
edge set, and (5) a crisp graph with fuzzy weights.  We are not aware of any research 
on the transformation of fuzzy graphs in pattern recognition applications. 

5   Conclusions 

The document recognition systems surveyed in this paper illustrate the power and 
flexibility that graph transformation offers for the processing and interpretation of 
structured data.  Section 4 discussed research issues which should be addressed in order 
to encourage more widespread use of graph transformation in document recognition.  
Graph transformation is competing against other powerful approaches, such as Hidden 
Markov Models [KoCh94], blackboard systems, stochastic grammars, and tree 
transformation. While I am a fan of graph transformation, I cannot make claims that 
graph transformation is currently superior to competing approaches. Managing 
intellectual complexity remains a problem: while it is fairly easy to understand a single 
graph production, it remains difficult to define a large collection of graph transformation 
rules to carry out a complex task such as document recognition. There is need for 
further research into software architectures based on graph transformation. Practitioners 
need clear guidance for how to organize their computations, to produce effective, 
maintainable, scalable, graph-transformation systems. 
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Abstract. This paper deals with the problem of graphical knowledge manage-
ment (formalization, modelling, representation and operationalization) in graph-
ics recognition systems. We present here a “generic” formalism for graphical 
knowledge, allowing various modellings for a given graphical shape. We use a 
modelling library based on this formalism for the management of our graphical 
knowledge. The use of this library allows to request graphical knowledge data-
bases, according to the processings’ requirements on graphical primitives. Like 
this, this approach allows interoperability between processings, especially for 
their combination. We present a “short” system use-case of our approach to il-
lustrate the interoperability between processings. 

1 Introduction 

This paper deals with the problem of graphical knowledge management in graphics 
recognition systems. This knowledge corresponds to graphical primitives used by 
systems during the recognition process. We present here a “generic” formalism for 
graphical knowledge. Indeed, this formalism allows various modellings of a given 
graphical shape. Based on this formalism, we have developed a modelling library for 
the representation and the operationalization of our graphical knowledge. We use this 
library in graphics recognition systems to request graphical knowledge databases, 
according to the processings’ requirements on graphical primitives. Like this, this 
approach allows the interoperability between processings, especially for their combi-
nation. In the paper’s follow-up, we present in section ( 2) an overview on graphical 
knowledge management in graphics recognition systems. In section (3), we present 
our approach for graphical knowledge management with our formalism, its represen-
tation and operationalization through our modelling library. In section ( 4), we present 
a “short” use-case of our approach with a graphics recognition system and its applica-
tion. Finally, in section ( 5) we conclude and give some perspectives. 

                                                           
♣ The authors wish to thank Sébastien Perin and Mustapha Hamidou (Rouen University, 

France) for their contribution to this work. 
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2 Graphical Knowledge Management: Overview 

Graphics recognition [19] is a stage of document image interpretation that is used for 
different purposes like: technical document interpretation [1], symbol recognition 
[10], handwriting recognition (especially Asian handwriting [18]), and so on. It is a 
well-known problem and several commercial applications exist [1]. A graphics recog-
nition process can be decomposed into two parts [14]: the extraction part of graphical 
primitives, and the system part.  

The system part uses various approaches in order to supervise the extraction proc-
ess [4]. These approaches come from pattern recognition and artificial intelligence 
domains. This paper deals especially with the extraction step of graphical primitives 
[22] [5]. This one extracts graphical primitives from document images corresponding 
to graphical shapes of documents. It employs many methods in order to extract differ-
ent primitive types from images. In a previous work [5], we have proposed a classifi-
cation of these methods in some families (Fig. 1). The methods are based on skele-
tonization (a), contouring (b), tracking (c), run (d), region (e), mesh (f), object seg-
mentation (g), connected component grouping (h). 

 

Fig. 1. (a) skeletonization (b) contouring (c) tracking (d) run(e) region (f) mesh (g) object seg-
mentation (h) component grouping 

We do not discuss in this paper about the presentation and the comparison of these 
methods1, but about common graphical primitives extracted between these methods as 
we show in Table 1. These graphical primitives can be grouped in four primitive 
classes: pixel, vectorial (vector, arc, and curve), region (subset of connected pixels on 
image), and symbol (a symbolic label). In the same way, some methods can be used 
to extract different types of primitive [5]. For example, the skeletonization and con-
touring are often used with a polygonisation method to extract vectorial data (in the 
“two steps” vectorisation systems [15]). Also, the run decomposition methods can be 
used to extract the skeleton and contours [24], and in this way used with polygonisa-
tion method, and so on. 

                                                           
1  It is not the purpose of this paper to do this, we report the reader to [1] [5] [10] and [22]. 

(a) (b) (c) (d) (e) 

(f) (g) (h) 
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Table 1. Comparison of methods for graphical primitive extraction 

Graphical primitives Methods 
Pixel skeletonization (a), contouring (b), run (d) 
Vectorial skeletonization (a), contouring (b), tracking (c), run (d), 

object segmentation (g) 
Region Run (d), region (e), component grouping (h)  
Symbol all 

So, a system can use different methods in order to extract some given graphical 
primitives. In a previous work [5], we have presented the drawbacks and advantages 
of all these methods (Fig. 1). So, their combination can help a system for the graphi-
cal primitive extraction. From our point of view, it is an important research perspec-
tive of graphics recognition. However, this perspective raises the problem of graphi-
cal knowledge exchange between the system’s processings based on these methods. 

In computer science systems “in the large” [20], the knowledge corresponds to se-
mantic data (example, data: “37.5”, semantic: “a temperature”) with their exploitation 
processes (the system parts based on knowledge use). The use of these exploitation 
processes corresponds to the operationalization of systems’ knowledge [4]. In these 
systems, the knowledge is used [20] in an internal way (in the algorithms) or in exter-
nal way (outside of algorithms). The external knowledge is based on knowledge rep-
resentation methods [16] like: representation languages, databases, and formats. In 
the internal and external cases, the knowledge used is based on a formalism [16]. 
Several formalisms exist2 like: algebraic (list, matrix, number, and so on.), rule, 
graph, frame, and so on. Based on these formalisms, the systems use modellings of 
their knowledge. A modelling corresponds to a possible use of a given formalism. In 
the literature [16], we talk about knowledge management for the formalization, the 
modelling, the representation, and the operationalization of knowledge. 

Different types of knowledge are used in graphics recognition systems [14]. This 
paper deals only with graphical knowledge [11]. This knowledge corresponds to 
graphical primitives used in systems. We resume on Table 2 formalisms commonly 
used for the graphical knowledge in some research systems, and standard formats of 
vector graphics. 

Table 2. Formalisms of graphical knowledge 

 

                                                           
2 We don’t present here these formalisms, and report the reader to [16] and [20].  

Systems Formalisms Formats Formalisms 
ADIK [12] vectorial, rule, symbol CGM [8] vectorial, graph 
ANON [1] vectorial, rule, symbol DXF [2] vectorial, list 
DMOS [3] region, vectorial, rule SVG [21] vectorial, list 
OOPSV [15] vectorial, graph, symbol 
QGAR [9] vectorial, graph 
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From our point of view, the graphical knowledge in graphics recognition systems 
is based on two formalism levels (Table 2). A low level is used to describe the graphi-
cal primitives. It is based on general formalisms used in graphic file formats [11]: 
vectorial, and raster (for the region representation). A high level is used to structure 
these graphical primitives. Different formalisms are then used. Among them the most 
used are the lists and the graphs [17], the rule formalism is often used too. However 
this one is more adapted to recognition problem than modelling problem [1] [3] [12]. 
The graph and list formalisms correspond to structural descriptions of graphical 
primitives. Indeed, the graphical shapes of documents represent themselves, in a natu-
ral way, according to a structural description [1] [10] [19].  

However, based on these structural formalisms, the graphics recognition systems 
use fixed modellings of their knowledge [3] [9] [12] [15]. The modellings are chosen 
according to the recognition approaches of these systems. Based on these fixed mod-
elling, these systems can’t deal with an adaptable combination of processings for the 
graphical primitive extraction. To solve “a part” of this problem, some systems per-
form their combinations through a low level formalism (image) [15], or a high level 
formalism (rule) [3]. 

In the following section (3), we present a “generic” formalism and a modelling li-
brary for the graphical knowledge management. This library allows to request a 
graphical knowledge databases, according to the processings’ requirements on 
graphical primitives. Like this, this approach allows the interoperability between 
processings, especially for their combination. 

3   Our Approach for Graphical Knowledge Management 

We present here our approach for graphical knowledge management. We first present 
in subsection ( 3.1) our formalism. Next, in subsection ( 3.2), w e present a modelling 
use-case of a given graphical shape. In subsection ( 3.3), we present the knowledge 
representation and operationalization through our modelling library. 

3.1   Used Formalism 

Our formalism is based on object-oriented concepts for knowledge formalization [13]. 
We have based our approach especially on works described in [23]. Our graphical 
knowledge (kg) is represented  (1) by a single graphical object (o). This graphical 
object is an instance (i) of a generic (and abstract) graphical object class (og) which is 
specialized in several graphical object classes ({1,.,u}) according to an inheritance (I) 
relationship. In this way, this representation exploits some important properties of 
inheritance [23], polymorphism and extensibility. The graphical objects are composed 
(2) of a set of data (D) and methods (M). These data (D) can be composed (2) of spe-
cific data (di), or other graphical objects (oi) through a composition (or aggregation) 
relationship.  

In our approach (as we have concluded in our overview of section ( 2)) we have 
decomposed the different graphical object classes, in an implicit way, into two for-
malism levels (3). The first one is a low level formalism for the description of 
graphical primitive (p). So, this description is based on vectorial and raster formal-
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isms [11]. We have considered some standard graphical primitives like: point, junc-
tion, line, arc, curve, region, and quadrilateral. However, these standard graphical 
primitives can be easily extended thanks to the polymorphism and extensibility 
properties [23] of our approach  (1). The second one is a high level formalism, based 
on list (l) and graph (g) formalisms, to structure the graphical objects corresponding 
to graphical primitives. 

{ }okg =∃   { }
ugg

I
g

i oooo ,.,
1

⎯⎯←⎯→⎯   (1)

{ }MDo ,=   { }{ }{ }vu ooddD ,.,,,., 00=   { }{ }wrPM ,,=  (2)

{ }{ }{ }glppo ugi
,,,.,1∈  (3)

The list formalism (l) defines (4) sets of ordered graphical object (O) and ordered 
attribute object (A). A given attribute object (ai) describes a relationship (5) between 
two successive graphical objects (oi) and (oj) of the list. These attribute objects (a) are 
defined in the same way (6) (7) than the graphical objects (o)  (1) (2). In the same 
way, these ones exploit the polymorphism and extensibility properties [23]. Accord-
ing to the list’s looping (4), the (A) size may be of (u) or (u-1). We have considered 
some standard attributes like the labelling, angle, length, and so on. 

{ } { }{ }{ }vu aaooAOl ,.,,,.,, 00==     ))1(( uuv ∨−=  (4)

{ } ( ) ijijii aoofooa =∃∀ ,,  (5)

{ }
ugg

I
g

i aaaa ,.,
1

⎯⎯←⎯→⎯  (6)

{ }MDa ,=   { }{ }{ }vu aaddD ,.,,,., 00=   { }{ }wrPM ,,=  (7)

The graph formalism (g) defines (8) sets of graphical object (O) and edge object 
(E). A given edge object (eq) describes a directed (or undirected) relationship (9) 
between any graphical objects (oi) and (oj). This relationship is defined (9) according 
to a given attribute object (aq).  

{ } { }{ }{ }vu eeooEOg ,.,,,.,, 00==  (8) 

{ }{ } { } ( ) qjijiqq aoofooajie =∃=∀ ,,,,  (9) 

Through these object-oriented concepts for knowledge formalization, our graphical 
knowledge (kg)  (1) is structured according to a hierarchical relational graph [17]. 
Indeed, our graphical objects (o)  (1) included into the list (l) (4) and graph (g) (8) 
objects can be other list (l) and graph (g) objects. The list (l) objects are used here to 
reduce the size of graph (g) objects. Indeed, the list formalism can be considered as 
graph formalism [17], this one is commonly used in graph representation models of 
document shapes [24]. 
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3.2   Modelling Use-Case 

Our formalism (subsection (3.1)) allows various modellings of a given graphical 
shape. In order to illustrate this “generic” aspect, we present here a modelling use-
case of linked-squares (Fig. 2 (a)). 

 

Fig. 2. (a) linked-squares (b) point list (c) line list (d) line graph (e) hierarchical lists (f) hierar-
chical graphs 

The Fig. 2 (b), (c), and (d) present three no-hierarchical modellings of linked-
squares. The (b) (c) modellings are based on the list formalism, for the point (p) (b) 
and line (l) (c) objects. Indeed, it is possible to describe the linked-squares according 
to successive points or lines. The (d) modelling is based on graph formalism for the 
line (l) objects. In this graph, the connected lines (l) are linked by angular attributes. 

The Fig. 2 (e) and (f) present two hierarchical modellings of linked-squares. The 
(e) modelling is based on list formalism for the line (l), junction (j), and (L) objects. In 
this modelling, the (L) objects represent sub-lists of line (l) object. Each sub-list cor-
responds to a square object. The (L), (j), and (l) objects are linked by the labelling 
attributes (close) and (connect). The (f) modelling is based on graph formalism for the 
line (l) and (G) object. In this modelling, the (G) objects represent sub-graphs of line 
(l) objects. Each sub-graph corresponds to a square object. In these sub-graphs, the 
line (l) objects are linked by labelling attributes (connect) and (parallel). The (l) and 
(G) objects are linked by an attribute corresponding to a graphical primitive (l). 

Like this, the Fig. 2 presents some of possible modellings (b-f) of linked-squares (a). 
Based on our formalism (subsection (3.1)), it is still possible to define several model-
lings. From our point of view, it doesn’t exist a best modelling to describe a given  
 

             (d)                                          (e)                                                (f)

                (a)                                     (b)                               (c) 
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graphical shape. Indeed, an adopted modelling by a graphics recognition system de-
pends of its process aims [14]. Then, it is important to allow the exchange of “similar” 
graphical knowledge between graphics recognition systems, in spite of differences 
between adopted modellings. 

3.3   Graphical Knowledge Representation and Operationalization 

We present in this subsection the representation and the operationalization of our 
graphical knowledge through our Graphical Object Modelling Library3.  

In our formalism (subsection (3.1)) each graphical and attribute object is com-
posed of a set of method (M) (2) (7). This set of method is composed of process 
methods (P) on object’s data, and read (r) write (w) methods (2) (7). In this way, 
each object supports its outsourcing. The Fig. 3 (a) gives an example of representa-
tion in XML used in our library of point object. The outsourcing properties of ob-
jects can be then used by other objects, like the (l) (4) and (g) (8) objects, or any 
other graphical or attribute objects using a composition relationship (2) (7). The  
Fig. 3 (b) gives an outsourcing example of point object used through a composition 
relationship into the line object. 

Fig. 3. XML representation: point (a) line (b) 

We use our library in the graphics recognition processings. Like this, our library al-
lows the graphical knowledge operationalization into the processings for, the graphi-
cal primitive management, and their read/write into graphical knowledge databases 
represented in XML (Fig. 3).  

The aim of our approach is to allow the interoperability between processings. We 
have developed a request based approach, in order to extract graphical knowledge 
from XML databases according to the processings’ requirements on the graphical 
primitives. This approach exploits request methods, based on list or/and graph search 
algorithms. So, these requests are “content based” like the FLoWeR4 requests. Indeed, 
our requests do not allow to structure search like sub-lists or/and sub-graphs. 

The Fig. 4 presents our requests based approach through an example. In this exam-
ple, a processing (Processing) performs a read request method (Rr) on a graphical 
knowledge database (kg). This request uses a set of “content constraints” correspond-
ing to the request (rr): list of point (lp) and size (s≥2). So, we can translate this request 
into natural language like this: “for graphical knowledge (kg) return lists where a list 

                                                           
3 GOMLib, available on http://site.voila.fr/mdhws/  
4  For Let Where Return. 

 

<OPoint x= "10" y= "10" /> <OLine length="10" direction="0"> 
       <OPoint x="10" y="10" /> 
       <OPoint x="20" y="10" /> 
</OLine> 

                      (a)                                                             (b) 
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is only composed of point object (lp) and the list’s size is upper than one point (s≥2)”. 
Then, a read graphical object (or) is extracted corresponding to request’s result. Fol-
lowing the execution of processing (Processing), an object to write (ow) is obtained. 
The processing (Processing) performs then a write request method (Rw) in order to 
update the graphical knowledge database (kg) with this result object (ow). During the 
(Rw) execution, (rr) is used like trace to locate the objects to update, in this example 
the line list objects (ll) update the point list object (lp). 

 

Fig. 4. example of request process on a graphical knowledge database 

4 System Use-Case 

In order to illustrate our approach for graphical knowledge management (section (3)), 
we present here a “short” system use-case of graphics recognition. The Fig. 5 (a-high) 
gives a network’s part extracted from an utility map [6]. For our graphics recognition 
system, we have developed the well-known contouring/skeletonisation approach [11]. 
We don’t discuss here about the processing abilities5, but about the interoperability 
between processings through the graphical knowledge database. 

In a first step (Fig. 5), our system performs a chaining processing (b) on the result-
ing image of skeletonisation/contouring processing (a-low). So, our graphical knowl-
edge database (kg) is updated (Table 3) from a raster object (r) to a graph (g) object 
composed of junction (j) and point list (lp) objects. In a second step, our system per-
forms a polygonisation processing (Fig. 5 (c)). A request on point list (lp) objects is 
then used to extract these (lp) objects form graph (g) object. These (lp) objects are then 
updated (Table 3) in (kg) by line list (ll) objects. In the final step, our system performs 
a contour matching processing (Fig. 5 (d)). A request on closed line list (ll) objects is 
then used to extract these (ll) objects form graph (g) object. These (ll) objects are up-
dated (Table 3) in (kg) by quadrilateral list (lq) objects. The result graphical knowledge 
database (kg) is then composed of (g), (j), (ll), and (lq) objects. 

                                                           
5  It is not the purpose of this paper to do this, we report the reader to [6]. 
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Table 3. update of graphical knowledge database for processings interoperability 

skeletonisation/contouring chaining polygonisation matching 
kg = {r} kg = {g,j,lp} kg = {g,j,ll} kg = {g,j,ll,lq} 

 
 
 
 
 
 
 
 

 

Fig. 5. (a) skeletonisation/contouring (b) chaining (c) polygonisation (d) matching 

5 Conclusion and Perspectives 

In this paper we have presented an approach for graphical knowledge management in 
graphics recognition systems. This approach is based on a “generic” formalism allow-
ing various modellings of a given graphical shape. This formalism is based on object-
oriented concepts, especially for the inheritance, polymorphism and extensibility 
properties. We represent and operationalize this formalism through our modelling 
library. We use this library into graphics recognition systems to request graphical 
knowledge databases, according to the processings’ requirements on graphical primi-
tives. Like this, this approach allows the interoperability between processings, espe-
cially for their combination. For the perspectives, in a first step we wish to develop a 
complete platform of graphics recognition processing based on our formalism. We 
would like to exploit the interoperability between processings to develop some strate-
gic approaches [6]. Next, we wish to extend our request based approach with request 
language to extract graphical object structures, through graph request [7].  
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Abstract. Vascular networks develop by way of angiogenesis, a growth process 
that involves the biological mechanisms of vessel sprouting (budding) and split-
ting (intussusception). Graph theory is a branch of discrete mathematics that is 
excellently suited to model vascular networks and to analyze their properties 
(invariants). A random graph process model can simulate the development of a 
vascular network that has been modeled using graph theory. The renal glomeru-
lus is one example of such a vascular network. Here the correlation between the 
invariants of this vascular network modeled as a graph and the mechanisms of 
the growth of the network are studied. It is proposed that the relative frequen-
cies of sprouting and splitting during the growth of a given renal glomerulus 
can be estimated by the invariants (root distance, radius, and diameter) of the 
graph representing the renal glomerulus network. Experimental evidence is 
given to support this conjecture. 

1   Introduction 

Angiogenesis is the biological process of blood vessel growth and vascular network 
development and has been observed to have two mechanisms: sprouting (budding) 
and splitting (intussusception) [1,2]. Predicting how a vascular network develops or 
describing how a network has grown is of great interest in the study of angiogenesis. 
Here we consider the problem of estimating the proportion of splitting in the devel-
opment of a given renal glomerular network and present a solution using a random 
graph process.  

Graph theory methods have been used to analyze the complex network of the renal 
glomerulus by representing vessels as edges and the branch points of the network as 
vertices [3-5].  A random graph process model can simulate the growth process of a 
vascular network and can be applied to any vascular network that can be represented 
by edges and vertices. 

This study will demonstrate how the generation of graphs by a random graph 
process can simulate the development of vascular networks. It is further shown how 
certain graph theory invariants may be used to estimate the relative frequencies of 
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their growth mechanisms (i.e., sprouting and splitting) that occurred in arriving at a 
given vascular network. This is done as follows. 

Using a random graph process that models the growth of a vascular network, a 
large set of random graphs is generated. The proportion of sprouting and splitting 
during the generation is kept as part of the associated data. A selected set of graph 
invariants is computed for the graphs in this set and compared with the same set of 
invariants of a given biological vascular network. This procedure suggests the two 
interesting findings: 

(1) There exists a correlation between certain graph invariants and the growth 
mechanisms of sprouting and splitting, and 

(2) The sprouting and splitting mechanisms are conjectured to have approximately 
occurred with equal probability in the renal glomerular networks of six normal 
adult rats and a higher proportion of splitting to have occurred in an adult uremic 
rat case. 

Details are provided in the sections that follow. In Section 2 a  random graph 
process model for angiogenesis together with the graph theoretical invariants used in 
this study are defined. In Section 3, the algorithm to estimate the growth pattern for 
glomerular networks is described. Section 4 contains the experimental data used to 
support our results.  

The rest of the paper is organized as follows. Section 2 illustrates a statistically in-
ferable approach to establish the individuality using the dichotomy model, showing 
the dichotomy transformation process. Section 3 presents features and distance meas-
ures used for iris authentication in the literature. Section 4 compares the experimental 
results of various classifiers using different features and distance measures. Finally, 
Section 5 draws some conclusion. 

2   Graph Theory: Definitions 

A graph G consists of a nonempty set V whose elements are called vertices and a 
second set E made up of pairs of vertices. The elements of E are called edges and the 
graph G is defined by the pair (V,E).    

A graph model for a vascular network is obtained by assigning the branch points 
of the network to be the vertices of the graph and the vessels between branch points to 
be the edges of the graph.  

A random process consists of a transformation (physical or simulated) that can be 
repeatedly applied to some entity and such that the transformation always produces a 
clearly identified outcome from some fixed known set of possible outcomes. The 
outcome is not known in advance but is determined by precisely specified rules of 
probability. In particular, a random process can be described by its set of possible 
outcomes, called the states of the process, together with their transition probabilities, 
the latter being the probabilities of moving from a given state to any other state of the 
process. A step in a random process starts by applying the underlying transformation 
of the process to the resulting state of the previous step and ends by obtaining the next 
state in the process. 

Such processes are considered under the general heading of stochastic processes 
(see [6] p. 419) and when other specific rules are included have more specialized 
names, for example, such as Markov processes, and the following. 

.



 A Vascular Network Growth Estimation Algorithm Using Random Graphs 47 

 

A Random Graph Process is a random process for which the states are graphs (see 
[7]). Using the two graph transformations associated with splitting and connecting as 
the steps in a random graph process a step by step simulation of angiogenesis is ob-
tained. Note the initial state is a single vessel. This process produces simulated vascu-
lar networks at various stages of development that can be compared to experimentally 
obtained biological vascular networks. An example of one result obtained by this 
approach is the conjectured proportion of splitting and connecting in arriving at bio-
logical or simulated vascular network with particular values of specified invariants.  

2.1   Two Mechanisms: Splitting and Connecting 

In this section, we formulate two mechanisms in recursive definition forms. A bio-
logical renal glomerular network grows starting from a single vessel whose two nodes 
are called the afferent (A) and efferent (E) nodes. Thus, the initial state (at step 1) of a 
network is formulated as follows: 
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A consensus of biological researchers indicates that sprouting and splitting are 
two important growth mechanisms. One observation of angiogenesis is that sprouting 
is followed quickly by the sprout connecting to a vessel. We shall call the latter the 
connecting mechanism. Thus when we refer to the two growth mechanisms we mean 
splitting and connecting. These two mechanisms are simulated with graph theory 
transformations and correspond to steps in a random graph process (see Figure 1). 
The process is applied to generate a large set of random graphs. Although the graphs 
generated are directed graphs, here we need only consider invariants of their underly-
ing undirected graphs.  

A state of a random graph process is described as Si = (Vi, Ei, RFi), where i indi-
cates the number of steps, Vi, Ei, and RFi  are the set of nodes, the set of arcs, and the 
relative frequency of splitting after i steps. Specifically, RFi  is the number of splits 
divided by the number steps. 

The splitting transformation (see Figure 1(a)) is defined as follows: 

Given a state Si = (Vi, Ei, RFi) with graph (Vi, Ei) having order n, size t, select an arc 
(u, v) uniformly with probability 1/t and introduce a split at arc (u, v) to obtain the 
state Si+1 at step i + 1. 
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The connecting transformation (see Figure (1b)) is defined in two steps as follows: 
Given a state Si = (Vi, Ei, RFi) select an arc (u, v) uniformly with probability 1/t and 
introduce a sprout at arc (u, v) to obtain the intermediate state S’i+1. This sprouting 
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introduces a pendant arc. Now given the intermediate state S’i+1 having order n + 2, 
size t + 2, with the newly introduced pendant arc (a, b), select an arc (c, d) uniformly 
with probability 1/(t + 2) and connect the pendant node b to arc (c, d). 
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(b) Connecting mechanism  

Fig. 1. Two mechanisms 

Remark. The connecting transformation can be partitioned into four types depending 
on where the target arc (c, d) is located relative to the sprouted node b. 

(i) (c, d) is at least distance 2 from b. 
(ii) (c, d) = (a, v); connection results in parallel arcs indistinguishable from a split. 
(iii) (c, d) = (u, a); connection results in a 2-cycle. 
(iv) (c, d) = (a, b); connection results in a loop. 

See Figure 2 for an illustration of the four types of connections. The figure shows 
a few random graphs generated starting with an arc and steps corresponding to split-
ting with probability ½. 
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Fig. 2. Random graphs using two transformations 

Fact 1. The number of nodes in a generated random graph after i steps is 
22|| += iVi . 

Fact 2. The number of arcs in a generated random graph after i steps is 13|| += iEi .  

Fact 3. If the splitting relative frequency is iRF  after i steps, then the connecting 

relative frequency is iRF−1 . 

Facts 1 and 2 are easily proven by induction. Fact 3 is by definition.  

2.2   Graph Invariants 

We shall use three graph invariants: radius (R), diameter (D), and root distance (rd) 
defined for a birooted undirected graph [9]. They will be used in a feature vector to 
estimate the growth process, specifically iRF , of a biological renal glomerular mi-
crovascular network. Note that iRF  at step i is also interpreted as the probability of 
splitting at each step leading up to step i.  The radius and diameter are the minimum 
and maximum eccentricities among the set of all vertices of a graph, respectively, 
where the eccentricity of a vertex u in a connected graph G is the maximum possible-
distance d(u,v) from u to any other vertex v in G. In other words, the eccentricity of u 
is the length (number of edges) of a shortest path connecting u to a vertex furthest 
from it. In the distance matrix shown in Figure 3, the bottom highlighted row gives 
the eccentricity distribution of the vertices of the graph. The root distance is the 
length of a shortest path between a vertex designated as the initial root and a second 
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vertex called the terminal root. In physiological terms, for a biological vascular net-
work, these roots correspond to what are called afferent and efferent nodes. Figure 3 
gives the values of these three graph invariants for the given graph. 
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Fig. 3. Graph Invariants for the given graph example 

3   Network Growth Estimation Algorithm 

We consider the problem of estimating the proportion of splitting that has produced a 
mature adult renal glomerular network. Our solution is via an algorithmic approach. 
The input to the problem is the graph representation of a biological renal glomerular 
network and the output is an estimation of the splitting and connecting mechanisms 
that occurred during its development. The proposed algorithm uses a random graph 
process. There are two parts to the algorithm: (a) the random graph generation and (b) 
the nearest neighbor classification phases.  

First, the random graph generation phase is used to obtain a reference sample set 
of random graphs to compare with a given biological network. It takes an input of a 
renal glomerular network in a graph representation ),( qqq EVG =  whose 

qRF , the 

relative frequency of splitting is unknown. Our goal is to generate a large set of ran-
dom graphs whose size is similar to the biological network. Let n be the step size to 
generate random graphs. In order to have similar order random graphs, we apply the 
following procedure. We know the order of the vertices in the biological network, that 

is || qV . By Fact 1, we can decide the one possible step size 
2

2|| −
= q

v

V
n  which 

will generate random graphs whose order is the same as the biological one. However, 
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the size of these graphs, 13|| ' += vv nE , by Fact 2, might be different from the bio-

logical one. Another possible step size is  
3

1|| −
= q

e

E
n  which will generate random 

graphs whose size is the same as the biological one. Here the random graphs’ order 

22|| ' += ee nV , by Fact 1, this order might be different from the biological network 

order. In order to minimize the difference, we choose the step size by the following 
equation.  
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Once the step size, n is decided, a large number m of random graphs whose rela-
tive frequency of splitting is known are generated by the pseudo code in Figure 4. As 
a result, a large set of randomly generated graphs are produced and the splitting RF 
distribution is roughly uniform.  

 

Fig. 4. Procedure for generating random graphs 

The next phase is the nearest neighbor classification. Each random graph is 
represented by a vector of its graph invariants miRFrdDRG iiiii ,1    ),,,( == . A 

vascular network in question is represented by 
qqqqqq RFRFrdDRG      where),,,(=  

is unknown. We can estimate 
qRF  by the iRF  of the random graph whose invariants 

are the most similar to the biological network’s graph invariants.  

222

},,{

)()()(minarg

1

qiqiqi

RFRFRF

q rdrdDDRRRF

mi

−+−+−=
∈

 (2) 

for pr = 1% to 100% incrementing by 100/m%

for i = 2 to n, the step size
Expand the graph by either splitting or connecting 

by the probability of pr.

end
store                             to the reference set. 

end

)}2,1{( and }2,1{    where)0,,( 11111 === EVEVS

Pr),te(GetNextSta 1= ii SS

Outputs:

m number of random graphs whose splitting rates are known.
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4   Experiments and Observations 

Two major experiments were conducted to support our claim that the proportion of 
splitting of the renal glomerulus can be estimated by its invariants. The first experiment 
is used to show the correlation between graph invariants and the proportion of splitting 
and the latter one is to show the result on the biological renal glomerulus networks.  

Table 1. Rat glomerular networks 

study |V| t R D rd 

Shea 195 322 9 15 11 

Remuzzi 247 403 9 15 12 

Nyengaard 256 426 9 15 11 

Antiga 302 460 12 18 12 

Winkler 312 466 11 16 13 

Wahl 358 595 12 19 11 

Uremic 159 276 9 17 7 

Newborn 24 35 4 7 5 

Antiga’s case     (302, 460, 159, 12, 18, 12) 
vs. 
Closest one (302, 451, 150, 11, 17, 12)., i.e., 
50%

Uremic case (159, 276, 119, 9, 17,  7) 
vs. 
Closest one (162, 241,  80,  9, 17,  8).   
i.e., 65%.  

Fig. 5. Graph invariant plots for renal glomerular networks and random graphs 
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Our algorithm is based on the hypothesis that there may be a correlation between 
graph invariants and the relative frequency of splitting. In order to demonstrate the 
correlation, m = 1000 random graphs whose step size, n = 80, are generated.  

Observation 1. As the probability of splitting gets bigger, the graph invariants such 
as root distance, diameter and radius get bigger. 

This phenomena is observed when the step size and the number of random graphs 
are sufficiently large; n > 40 and m > 100. The step size limit is sufficient for biologi-
cal adult renal glomerular networks which we shall see in the next experiment.  

We considered six normal adult rat renal glomerular networks, one adult rat with 
renal failure (uremic), and a five day old newborn rat. Their graph invariants are 
shown in Table 1. Their step sizes can be computed by eqn 1 and they are n = 96, 
122, 127, 150, 155, 178, 78, and 11 respectively.  Figure 5 shows the graph invariant 
plots for Antiga’s case and uremic case.  Random graphs are grouped into four clus-
ters for visualization purposes. Our experimental results suggest that all normal adult 
renal glomerular networks have approximately ½ probability of splitting whereas the 
uremic case suggests a higher proportion of splitting.  

5   Conclusion 

We considered the problem of estimating splitting proportion of a given biological renal 
glomerulus network. A random graph process model was used to simulate the develop-
ment of a vascular network. The correlation between the invariants of this vascular 
network modeled as a graph and the mechanisms of the growth of the network were 
studied. It was shown that the relative frequencies of sprouting and splitting during the 
growth of a given renal glomerulus can be estimated by the invariants (root distance, 
radius, and diameter) of the graph representing the renal glomerulus network.  
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Abstract. This paper shows how to construct a linear deformable model
for graph structure by performing principal components analysis (PCA)
on the vectorised adjacency matrix. We commence by using correspon-
dence information to place the nodes of each of a set of graphs in a
standard reference order. Using the correspondences order, we convert
the adjacency matrices to long-vectors and compute the long-vector co-
variance matrix. By projecting the vectorised adjacency matrices onto
the leading eigenvectors of the covariance matrix, we embed the graphs
in a pattern-space. We illustrate the utility of the resulting method for
shape-analysis.

1 Introduction

The literature describes a number of attempts at developing probabilistic models
for variations in graph-structure. Some of the earliest work was that of Wong,
Constant and You [11], who capture the variation in graph-structure using a dis-
cretely defined probability distribution. Bagdanov and Worring [10] have over-
come some of the computational difficulties associated with this method by using
continuous Gaussian distributions. For problems of graph matching Christmas,
Kittler and Petrou [1], and Wilson and Hancock [2] have used simple proba-
bility distributions to measure the similarity of graphs. There is a considerable
body of related literature in the graphical models community concerned with
learning the structure of Bayesian networks from data [12]. However, despite
this effort the methods fall well short of contructing genuine generative models
from which explicit graph structures can be sampled. In this respect the study
of graph-structures is less advanced than the study of pattern-vector or shape
spaces. The reasons for limited progress are two-fold. First, graphs are not vec-
torial by nature. While conventional pattern recognition techniques construct
shape-spaces from vectors, it is not straightforward to convert graphs into vec-
tors. Second, in practice there usually exists structural noise or disturbance, and
graphs are of different size.

To overcome these two problems, in a recent paper [4] we have explored how
ideas from spectral graph theory can be used to construct pattern-spaces for
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sets of graphs. The idea here has been to extract features that are permuata-
tion invariants from the adjacency matrices of the graphs under study. Pattern
spaces may then be constructed from the feature-vectors using techniques such
as principal components analysis, or more recently developed ones from manifold
learning theory such as local linear embedding [3]. However, this work does not
lead to a generative model. The reason for this is that it is not possible to recon-
struct the graph adjacency matrices from the feature-vectors used to construct
the pattern-spaces. Hence, although the embedding procedure can account for
the statistical variations in the graph feature vectors, it does not account for
the statistical variation in graph-struture that gave rise to the feature-vectors.
In other words, the statistical variation in graph-structure remains hidden.

The aim in this paper is to combine ideas from the spectral analysis of graphs
and linear deformable models to construct a simple generative model for graph-
structure. One of the problems that limits the use of the probabilistic models
described above, is that they are suffer from exponential complexity and are
therefore not easily sampled from. To overcome this problem of exponential
complexity we turn to the shape-analysis literature where principal components
analysis has proved to be a powerful way of capturing the variations in sets of
landmark points for 2D and 3D objects [5]. The idea underpinning the model is
to convert graphs to pattern vectors by stacking the columns of their adjacency
matrices to form long-vectors. From the covariance matrices for the long-vectors,
there are a number of ways in which to construct pattern-spaces. The simplest of
these is to construct an eigenspace by projecting the long-vectors onto the leading
eigenvectors of the covariance matrix. The distribution of graphs so produced
can be further simplified by fitting a manifold or a mixture model. However, here
we use the eigenvectors of the covariance matrix to construct a linear model for
variations in the adjacency matrices.

To do this we borrow ideas from point distribution models. Here Cootes and
Taylor[5] have shown how to construct a linear shape-space for sets of landmark
points for 2D shapes. We use a variant of this idea to model variations in the
long-vectors for the standardised covariance matrices. The graphs are deformed
by displacing the mean adjacency matrix long-vectors in the directions of the
leading eigenvectors of the covariance matrix. Our method allows the pattern of
edge-deformations to be learned and applied at the global level. This model may
be both fitted to data and sampled. Distances between pairs of graphs can be de-
fined as the Euclidean distance between two vectors of deformation parameters.

2 Graph Adjacency Matrices Vectorisation

In this paper, we are concerned with a set of N graphs Gk, k = 1, 2, . . . , N . The
kth graph is denoted by Gk = (Vk, Ek), where Vk is the set of graph nodes and
Ek ⊆ Vk × Vk is the edge-set of the graph. Since we adopt a graph-spectral
approach in this paper, we characterise the edge-structure of graphs using ad-
jacency matrices. The adjacency matrix Ak of graph Gk is a |Vk| × |Vk| matrix
whose element with row index i and column index j is
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Ak(i, j) =
{

1 if (i, j) ∈ Ek

0 otherwise
. (1)

To construct our generative model of variations in graph structure, we will
convert the adjacency matrices into a vector form where the entries are in a
standard order. If the nodes of the graphs are ordered, i.e. they are labelled in a
standard way, then can simply stack the columns of the adjacency matrix to form
a |Vk| × |Vk| long-vector which we denote by zk. Unfortunately, the standarised
label order or correspondence order is rarely to hand in partical problems. Hence
to construct the long-vector zk, we need to permute the order of the rows and
columns of the corresponding adjacency matrix Ak. To do this we use the graph-
matching method reported by Luo and Hancock[6]. We represent the set of
correspondences between the nodes of pairs of graphs using a correspondence
matrix. For the graphs indexed k and l, the correspondence matrix is denoted
by Sk,l. The elements of the matrix convey the following meaning,

Sk,l =
{ 1 if node i ∈ Vk is in correspondence with node j ∈ Vl

0 otherwise
. (2)

The graph matching method recovers the correspondence matrix using the EM
algorithm and singular value decomposition of an adjacency structure correla-
tion matrix. The algorithm commences from a Bernoulli model for the corre-
spondence indicators, which are treated as missing data. From this distribution
an expected log-likelihood function for the missing correspondence indicators is
consructed. In the maximisation step of the algorithm, a singular value decom-
position method is used to recover the correspondence matrix which satisfies the
condition

Sk,l = arg max
S

Tr[AT
k SAlS

T ]. (3)

In other words, the maximisation likelihood correspondence matrices are those
that maximise the correlation of the two adjacency matrices.

If we treat graph Gk as a reference graph, the permuted adjacency matrix of
graph Gl can then be written as

Al = Sk,lAlS
T
k,l. (4)

and its columns stacked to form the long-vector zl. Differences in the numbers of
graph nodes may be accommodated by selecting the reference graph Gk so that
it has the largest number of nodes in the set under investigation, and allowing
null-entries in Sk,l.

3 Linear Deformable Model for Graphs

Our aim is to construct a linear deformable model which can be used as a genera-
tive model for the variations is graph edge-structure. To do this, we represent the
variations present in the set of graphs using the mean long-vector and the covari-
ance matrix for the long-vectors. Deformations in graph structure are modelled
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by perturbing the mean long-vector in the directions of the principal eigenvectors
of the covariance matrix.

To be more formal, we commence by calculating the mean long-vector (ẑ)
and the long-vector covariance matrix (Σ) for the set of permuted adjacency
matrices using the following formulae

ẑ =
1
N

N∑
k=1

zk Σ =
1
N

N∑
k=1

(zk − ẑ)(zk − ẑ)T . (5)

To construct the deformable model, we commence by computing the eigenvalues
and eigenvectors for the covariance matrix Σ. The eigenvalues λ1, λ2, . . . , λN

are found by solving the polynomial equations |Σ − λI| = 0, where the I is
the identity matrix. The associated eigenvectors φ1, φ2, . . . , φN are found by
solving the linear eigenvector equation Σφk = λkφk. From the eigenvectors we
construct a modal matrix. The eigenvectors are ordered in decreasing eigenvalue
order to form the columns of the modal matrix, denoted by Φ = (φ1|φ2| . . . |φN ).
The linear deformable model allows the components of the adjacency matrix
long-vectors to undergo displacement in the direction of the eigenvectors of the
covariance matrix. For the long-vector of the graph Gk, the displaced vector is
given by

z̃k = ẑ + Φγk, (6)

where γk is a vector of modal coefficients for graph Gk. The parameter vector γk

measures the degree of displacement for the different vector components along
the directions of the corresponding eigenvectors of the covariance matrix. The
modal coefficient vectors are also a useful measure of the degree of graph de-
formation from the mean since they can be used for computing a measure of
distance between graphs.

Once trained, i.e. the mean and covariance estimated, then the deformable
model can be easily fitted to data by searching for the least-squares parameter
vector. Suppose that the modal is to be fitted to the graph with standardised
adjacency matrix long-vector zk. The least-squares parameter vector satisfies the
condition

γk = arg min
b

(zk − ẑ − Φb)T (zk − ẑ − Φb) (7)

and the solution is

γk =
1
2
ΦT {zk − ẑ} . (8)

Which is simply the projection of the centred long-vectors onto the space spanned
by the covariance matrix long-vectors.

4 Experiments

In this section we provide experiments. We commence with examples on synthetic
data, and then present real-world experiments on images of human faces.
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4.1 Synthetic Data

We commence our experimental study with a synthetic example in which cor-
respondences between nodes are known and the graphs have the same number
of nodes, but a different edge structure. The set of synthetic images used in
this study are shown in Figure 1. This is a set of perspective views of a house
as it rotates. The associated graphs are shown in Figure 2. It is important to
note that although the number of feature-points in this sequence remains the
same, there are significant structural differences in the graphs in the different
views.

In Figure 3 we show the eigespace projection of the graphs. The trajectory
is well behaved and does not exhibit kinks, or fold back on itself. In addition,
the points corresponding to neighbouring views are always closer to one-another
than views that are not adjacent. This feature is underlined by the interpoint
distance function which is shown in the right panel of the figure.

4.2 Real World Experiments

The data used in our experiments are provied by images in the BioID face
databases [9]. For a subset of 27 images from the data-bases we have extracted
20 feature points. The graphs used in out studies are the Delaunay triangulations
of the feature points. In Figure 4 we show a sample of the face images used, and
the corresponding graphs generated are shown in Figure 5. Due to changes is
expression, the relationships between the feature points changes and hence they
give rise to different graph structures.

Once, the matrix Φ is estimated, then we can generate new graph-instances by
selecting a parameter vector γ. The corresponding long-vector adjacency matrix
is zg = ẑ+Φγ. The long-vector zg can be folded to give the adjacency matrix Ag.
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Fig. 1. Model sequence with feature points
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Fig. 2. Graph representation of the model sequence
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Fig. 4. Face sequence

The parameter vector γ can be sampled from a prior distribution, however here
we simply vary its components by hand. By setting the components correspoding
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Fig. 6. Three modes of graph set BioID

to all but one of the covariance matrix vectors to zero, we can systematically
explore the deformation modes of the learned structural model. The rows in
Figure 6 shows the variations modes of along the three eigenvector directions
corresponding the largest three eigenvalues. The different panels in the rows are
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Fig. 7. Mean, test and fitted graphs

obtained by varying the relevant component of γ. There are clear differences in
the structures captured by the different eigenmodes. The first mode to captures
seprately the complex edge-structure around the eyes and the lips. The second
eigenmode, represents the edge-connections between the eyes and the lips. The
third eigenmode introduces left-right asymmetries.

Next we investigate the fitting of the model to data. The left panel of Figure
7 shows the mean graph of the BioID graph data-set. The middle panel is the
test graph which is the 10th of the subset of BioID face images (and was not
used in training). The right panel shows the least squares fit of the model to the
test graph. Bold lines are used to show the differences of the mean graph with
the mode graphs. The model fits the test graph well.

Finally, we show the projection of the face-graphs onto the space spanned by
the three leading eigenvectors of the adjacency matrix in Figure 8. Two clear
clusters emerge. Examination of the raw data shows that these correspond to
the differences between neutral and exagerated expressions.
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5 Conclusions

In this paper, we have presented a linear generative model that can be used to
capture variations in graph-structure. The method involves converting the adja-
cency matrix into a long-vector and computing the sample mean and covariance
matrix for the long vectors. New graph instances are generated by deforming the
mean long-vector in the directions of the eigenvectors of the covariance matrix.
Explicit adjacency matrices can by recovered by folding the long-vector. Experi-
ments show that the method is capable of capturing plausible modes of variation
in graph-structure.

There are a number of ways we intend to develop this work. First, we aim to
explore in detail the structure of the shape manifold generated by the embedding
procedure. Second, we aim to use the generative modal for organising large
structural data-bases.
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Graph Seriation Using Semi-definite
Programming

Hang Yu and Edwin R. Hancock
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University of York, UK

Abstract. Graph seriation is concerned with placing the nodes of a
graph in a serial order so that edge consecutive constraints are generally
preserved. It is an important task in network analysis problem in routine
and bioinformatics. In this paper we show how the problem of graph
seriation can be solved using semi-definite programming (SDP). This
is a convex optimisation procedure that has recently found widespread
use in computer vision. The main contribution of the paper is to detail
the matrix representation needed to cast the graph-seriation problem in
a matrix setting so that it can be solved using SDP. We illustrate the
utility of the method for graph-matching and graph-clustering, where it
is shown to offer advantages to the graph-spectral approach to seriation.

1 Introduction

The problem of placing the nodes of a graph in a serial order is an important
practical problem that has proved to be theoretically difficult. The task is one
of practical importance since it is central to problems such as network routing,
the analysis of protein structure and the visualisation or drawing of graphs.
Theoretically, the problem is a challenging one since the problem of locating
optimal paths on graphs is one that is thought to be NP-hard [12]. The problem
is known under a number of different names including “the minimum linear
arrangement problem” (MLA) and “graph-seriation”. There are also close links
with the problem of locating steady state random walks in graphs.

Stated formally, the problem is that of finding a permutation of the nodes
of a graph that satisfies constraints provided by the edges of the graph. The
recovery of the permutation order can be posed as an optimisation problem. It
has been shown that when the cost-function is harmonic, then an approximate
solution is given by the Fiedler vector of the Laplacian matrix for the graph under
study [8]. Thus, the solution to the seriation problem is closely akin to that of
finding a steady state random walk on the graph, since this too is determined by
the Laplacian spectrum. However, the harmonic functions does not necessarily
guarantee that the nodes are arranged in an order that maximally preserves
edge connectivity constraints. In a recent paper, Robles-Kelly and Hancock [2]
have reformulated the problem as that of recovering the node permutation order
to edge connectivity constraints, and have provided an approximate spectral
solution to the problem.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 63–71, 2005.
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Although spectral methods [14] are elegant and convenient, they are only
guaranteed to locate solutions that are locally optimal. Recently, semidefinite
programming (SDP) [11] has been developed as an alternative methods for lo-
cating optimal solutions couched in terms of a matrix representation. Broadly
speaking, the advantage of the method is that it has improved convexity proper-
ties, and is less likely to became trapped in a non-global optimum. The method
has been applied to a number of graph-based problems in pattern recognition
including graph partitioning [6], segmentation [7] and the subgraph isomorphism
problem [3]. For a mathematically detailed account see the survey by Alizadeh [4]
which explains how semidefinite programming may be applied to combinatorial
optimization.

The aim in this paper is hence to investigate whether SDP can be applied to
the graph-seriation problem. We commence by illustrating how the cost-function
of Robles-Kelly and Hancock can be encoded in a matrix form to which SDP
can be applied. With this representation to hand, then standard SDP methods
can be applied to extract the optimal serial ordering. To do this we lift the cost
function to a higher-dimensional space. Here the optimization problem is relaxed
to one of convex optimization, and the solution recovered by using a small set of
random hyperplanes. In the experimental section, we illustrate the method on
the problem of graph-matching [15], where it appears to outperform the spectral
method used by Robles-Kelly and Hancock.

2 Graph Seriation

We are concerned with the undirected graph G = (V, E) with node index-set V
and edge-set E ⊆ V × V . The adjacency matrix A for the graph is the V × V
matrix with elements

A(i, j) =
{

1 if(i, j) ∈ E
0 otherwise

(1)

The graph seriation problem has been formally posed as one of optimisation in
the work of Atkins et al [8] and Robles-Kelly [2]. Formally, the problem can be
stated as finding a path sequence for the nodes in the graph using a permutation
π which will minimize the penalty function

g(π) =
|V |∑
i=1

|V |∑
j=1

A(i, j)(π(i)− π(j))2 (2)

Since the task of minimizing g is NP-hard due to the discrete nature of the per-
mutation, a relaxed solution is sought using a function h of continuous variables
xi. The relaxed problem can be posed as seeking the solution of the constrained
optmisation problem

min h(x) =
∑
(i,j)

f(i, j)(xi − xj)2 (3)
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s.t.
∑

i

xi = 0, and
∑

i

x2
i = 1

Using graph-spectral methods, Atkins and his coworkers showed that the solu-
tion to the above problem can be obtained from the Laplacian matrix of the
graph. The Laplacian matrix is defined to be L = D −A where D is a diagonal
matrix with di,i =

∑n
j=1 Ai,j . The solution to the relaxed seriation problem (4)

is given by the Fiedler vector, i.e. the vector associated with the smallest non-
zero eigenvalue of L. The required serial ordering of the is found by sorting the
elements of the Fiedler vector into rank-order. Recently, Robles-Kelly and Han-
cock [2] have extended the graph seriation problem by adding edge connectivity
constraints. The graph seriation problem4 is restated as that of minimising the
cost-function

hE(x) =
|V |−1∑
i=1

|V |∑
k=1

(A(i, k) + A(i + 1, k))x2
k (4)

By introducing the matrix

Ω =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 · · · 0 0
0 2 0 0 · · · 0 0
...
0 0 0 0 · · · 2 0
0 0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦
the path connectivity requirement is made more explicit. The minimiser of hE(x)
satisfies the condition

λ = arg min
x∗

x∗T ΩAx∗
x∗T Ωx∗

(5)

Although elegant and convenient, spectral methods are are only guaranteed
to find a locally optimal solution to the problem. For this reason in this paper we
turn to the more general method of semidefinite programming to locate an opti-
mal solution which utilizes the convexity properties of the matrix representation.

3 Semidefinite Programming

Semidefinite programming (SDP) is an area of intense current topical interest
in optimization. Generally speaking, the technique is one of convex optimisation
that is efficient since it uses interior-point methods. The method has been applied
to a variety of optimisation tasks including combinatorial optimization, matrix
completion and dual Lagrangian relaxation on quadratic models. Semidefinite
programming is essentially an extension of ordinary linear programming, where
the vector variables are replaced by matrix variables and the nonnegativity el-
ementwise constraints are replaced by positive semidefiniteness. The standard
form for the primal problem is:
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min traceCX (6)
s.t. traceFiX = bi i = 1...m

X � 0

where C, Fi and X are real symmetric n × n matrices and bi is a scalar. The
constraint X � 0 means that the variable matrix must lie on the closed convex
cone of positive semidefinite solutions. To solve the graph seriation problem using
semidefinite programming, we denote the quantity Ω1/2AΩ−1/2 appearing in
Equation 5 by B and Ω1/2x∗ by y. With this notation the optimisation problem
can be restated as

λ = arg min
yT y=1

yT By (7)

Noting that yT By = trace(ByyT ) by letting Y = yyT in the semidefinite pro-
gramming setting the seriation problem becomes

min trace BY (8)
s.t. trace EY = 1

where the matrix E is the unit matrix, with the diagonal elements set to 1 and all
the off-diagonal elements set to 0. Note that Y = yyT is positive semidefinite and
has rank one. As a result it is convex and we can add the positive semidefinite
condition Y ∈ S+

n where S+
n denotes the set of symmetric n× n matrices which

are positive semidefinite.

3.1 Interior Point Algorithm

To compute the optimal solution Y ∗, a variety of iterative interior point meth-
ods can be used. By using the SDP solver developed by Fujisawa et.al [9], a
primal solution matrix Y ∗ can be obtained. Using the solution Y ∗ to the convex
optimization problem (9), we must to find an ordered solution y to the original
problem (7). To do this we use the randomized-hyperplane technique proposed
by Goemans and Williamson [13].

Since Y ∗ ∈ S+
n , by using the Cholesky decomposition we have that Y =

V T V, V = (v1, ....vn).Recalling the constraint yT y = 1, the vector y must lie
on a unit sphere in a high dimensional space. This means that we can use the
randomized hyperplanes approximation. This involves choosing a random vector
r from the unit sphere. An ordered solution can then be calculated from Y ∗ =
V T V by ordering the value of vT

i r. We repeat this procedure multiple times for
different random vectors. The final solution y∗ is the one that yields the minimum
value for the objective function yT By. This technique can be interpreted as
selecting different hyperplanes through the origin, identified by their normal r,
which partition the vectors vi, i = 1....n.

The solution vector x∗ can be obtained using the equation λ1/2x∗ = y, and
the elements of the vector x∗ then can be used to construct the serial ordering of
the nodes in the graph. Commencing from the node associated with the largest
component of x∗, we sort the nodes in so that the nodes are ordered so that the
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components of x∗ are decreasing magnitude and also satisfy edge connectivity
constraints on the graph. We iteratively proceed in the following. Let us denote
the list of the nodes visited by Sk at the kth iteration. Initially S1 = ii =
argmaxix(i). We proceed by searching the set of the first neighbours of i1, i.e.
Ni1 = {j|(i1, j) ∈ E}, to locate the node which is associated with the largest
remaining component of x∗. This node is then appended to the list of nodes
visited list and satisfies the condition i2 = argmaxl∈Ni1x ∗ (l). This process is
repeated until every node in the graph is visited. At termination the sorted list
of nodes is SG.

4 Experiments

In this section, we provide an experimental evaluation of our new algorithm for
graph seriation. Our experimental evaluation is divided into two parts. First, we
explore how the serial graph can be used for graph matching. Second, we present
results for the clustering of graphs using edit distances between seriated node
sequences.

4.1 Graph Matching

By converting graphs to strings, they can be matched by minimising string edit
distance. Here we use the probabilistic framework described by Robles-Kelly and
Hancock [2]. For our experimental evaluation we use the COIL image database
[16]. We compare the matching results with some alternative graph spectral
matching algorithms. The investigated methods include the original spectral
seriation method of Robles-Kelly and Hancock [1], the method of Shapiro and
Brady [10] and that of Scott and Longuet-Higgins [5]. To extract graphs from
the images, we first detect feature points using the Harris corner detector. The
graphs used in our study are the Delaunay triangulations of the point sets. The
reason for using the Delaunay graph is that it incorporates important structural
information from the original image.

In the images studied there are rotation, scaling and perspecitve distortions
present. Example images from the sequences are shown in Fig 1 and correspond
to different camera viewing directions of the objects. The detected feature points
and their Delaunay triangulations are overlayed on the images. In Fig 2, we show
the correspondences located by performing string matching on the seriations of
the graphs extracted from the images.

To test whether the algorithm is robust when confronted by corruption and
noise, we also perform experiments on synthetic data. We have randomly gen-
erated a set of 50 2D points and constructed the associated Delaunay trian-
gulations. We have simulated the effects of noise and structural error. We first
add Gaussian errors to the point positions, while keeping the number of the
points fixed. The parameter of the noise process is the standard deviation of the
positional jitter. In Figure 3, we show the fraction of correct correspondences as a
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Fig. 1. Delaunay graphs overlayed on coil data
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Fig. 2. Our algorithm for coil image sequences

function of the noise standard deviation for our method, Robles-Kelly and Han-
cock’s spectral seriation method, Shapiro and Brady’s [10] method, and Scott
and Longuet-Higgins’ method [5]. In Figure 4, we investigate the effect of struc-
tural noise. Here we have added a controlled fraction of additional nodes at
random positions and have recomputed the Deluanay triangulations. We plot
the fraction of correct correspondences as a function of the fraction of added
nodes. The plot again compares the result of applying our method to the data,
and the results obtained using spectral seriation, Scott and Longuet-Higgins’
method, and Shapiro and Brady’s method. The main feature to note from
the plot is that the two seriation methods outperform the spectral methods
of Scott and Longuet-Higgins and Shapiro and Brady by a significant margin.
Our SDP seriation method offers a margin of improvement over the spectral
seriation method.
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Fig. 3. Comparison of four methods for graphs with same number of nodes
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Fig. 4. Correspondences for three methods for graph matching with differing numbers
of nodes

4.2 Graph Clustering

We have selected for objects from the COIL database. For each object there are
72 different views. For the 288 graphs in the data-set, we have computed the
complete set of distances between each pair of graphs. We have explored cluster-
ing of the graphs using the following procedure. First, we convert the graphs into
strings using our SDP seriation method. Second, the pair-wise correspondences
between two different graphs in the set are located. Finally we compute the
edit distances by using the correspondences on the serialized strings. We apply
multidimensional scaling [17] on the matrix. The results are shown in Figure 5.
The different views of the same object are shown as points of the same colour.
From the figure it is clear that the different objects are well separated and form
distinct clusters.
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Fig. 5. Clustering Result

5 Conclusions

In this paper we have shown how the graph-seriation problem can be solved us-
ing semi-definite programming. This is convex optimisation procedure that uses
randomised hyperplanes to locate the solution. We have applied the resulting
technique to the problem of computing graph edit distances. Both the graph-
matches and graph clusters produced by the method are significantly better than
those delivered by standard spectral methods, and also offer a useful margin of
improvement over the standard spectral method of seriation.

There are a number of ways in which the work reported in this paper can be
extended. First, we aim to explore whether a more sophisticated string matching
method based on hidden Markov models can be used in place of the simple error
model used in this paper. Second, we plan to use the method to learn a generative
model of graph variation.
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Abstract. This paper shows how strings can be used in a natural images
classification task. We propose to build an attributed string from a set of
regions of interest detected thanks to an interest point detector. These
salient zones are characterized by local signatures describing singularities
and they are linked by using graph seriation algorithms and perceptual
methods. Once each image is represented by a string of signatures, we
propose to use string-based edit distances and an ordered histograms-
based distance in order to perform the classification task. Experiments
have shown that whereas seriation algorithms give approximately the
same results, the ordered histogram based distance is more efficient for
the considered application.

1 Introduction

Nowadays, digital images are more and more present in the cyberworld. Indeed,
peer to peer sharing, digital camera and Internet network provide an access to
a lot of images for most people. As image databases grow exponentially, people
need to have powerful solutions to manage them. Image classification is one
such solution allowing to group images into semantically meaningful categories.
It can thus be helpful for daily tasks such as browsing, annoting, indexing, etc.
In this paper, we are interested in classification methods using low level image
features. Such image clustering approaches perform first a feature extraction step
in order to reduce the amount of data and to extract relevant and discriminating
measures used during the classification step. This extraction phase results in a
feature vector (also called signature) describing the image content.

Classically, image recognition approaches extract the image signature by con-
sidering the image content as a whole. Signatures can describe color by using e.g.
classical histograms [16] or even texture [11] by using e.g. Gabor filter banks.
However, during the last decade, it has been shown that better classification
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rates can be obtained by computing signatures around only a limited number of
pixels called interest points. Recognition is then performed thanks to registering
algorithms. In this case, the problem is clearly the lack of ordering between the
interest points because the image can no longer be considered as a vector, in-
creasing thus the complexity of the classification step. In this paper, we propose
to define such an order thanks to two main approaches : a spectral graph seri-
ation approach and a saliency-based approach. The image is then described by
a string of local signatures, each one characterizing singularities in the region of
interest thanks to a foveal wavelet descriptor [13]. Finally, the last classification
step can be performed by a distance between strings. We have tested some of
them and present the classification results.

The paper is organized as follows. Section 2 presents the salient points de-
tector used in order to define the string nodes. Section 3 describes the different
methods that can be envisaged to generate a string from a set of salient points.
These strings are then compared thanks to some distances presented in section 4.
Experiments comparing these approaches are presented in section 5 and finally,
section 6 concludes this paper.

2 Interest Points Detection

The use of interest points for image retrieval was proposed in [3, 14] and was
motivated by the definition of special points which capture only the relevant
information of the signal. Consequently, assigning a local signature to each region
of interest centered on an interest point could be more discriminative of the image
content than computing a global signature. Nevertheless, finding interest points
is quite difficult because it requires the definition of what is perceptually relevant
in a signal.

Many approaches have been proposed in the literature to detect interest
points. In [5], an algorithm using the local auto-correlation of the image local-
izes them on corners. Although this detector is very often used [14], it has the
drawback of positioning the points on textured regions omitting other regions
which can be critical for the classification. Moreover, there is no perceptual jus-
tification about the importance of corners. In [2], the authors propose a detector
that locates interest points in high contrast area. Finally, observing that multi-
resolution, orientation and frequency analysis are of prime importance for the
Human Visual System, some wavelet-based detectors have been proposed in [7, 9]
that locate points on sharp region boundaries.

The detector proposed in [7] is used in our system and proceeds as follows:

– a discrete wavelet transform [10] is firstly performed on the image I up to a
resolution level 2r (r ≤ −1);

– the obtained wavelet coefficients are zerotree represented [15] resulting in a
hierarchical data structure (tree) of wavelet coefficients;

– this tree is traversed a first time from leaves to the root node by computing
at each resolution 2j (j ≤ −1) a saliency map SI

2j reflecting the perceptual
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Original image Wavelet detector Harris detector

Fig. 1. Interest points detection

relevance of the wavelet coefficients present in the level 2j . The saliency value
SI

2j (x, y) at the location (x, y) is defined by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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where ws
2j (x, y) stands for the wavelet coefficient of the subband Ds

2j located
at (x, y), Max(Ds

2j ) (s = 1, 2, 3) denotes the maximum wavelet coefficient
value over the detail subband Ds

2j , and αk (with k ∈ [r,−1] and 0 ≤ αk ≤ 1)
is a weighting factor balancing the importance of saliency values with respect
to the resolution level;

– from the saliency maps previously computed, the tree is traversed a second
time from the root to the leaves in order to choose, at each tree level, the
most salient wavelet coefficients.

The final result of these different steps is the construction of a saliency map
SI with the same resolution as I and that reflect the perceptual importance of
the pixels. Indeed, the higher is SI(x, y), the more the pixel (x, y) is perceptu-
ally important. If N interest points are needed, then the N pixels with highest
coefficients SI(x, y) in the saliency map are chosen.

As it can be seen on Figure 1, this interest point detector locates points
on sharp region boundaries. The points are also more spread than the classical
Harris corner detector [5] in the case of textured images.

3 Strings Construction

Interest points are usually mixed with registration techniques [14] for assessing
similarity between images. In these approaches, each point is considered indepen-
dently of each other and the dependencies or correlation that may exist between
them are not used. However, it is well known that human eyes are able to clas-
sify an image from a set of focus of attention and saccadic eye movements. We
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propose thus to link the detected interest points in order to construct a string
composed of local signatures which describe each region of interest centered on
an interest point. Therefore, images comparison can be performed by a string
comparison. Several techniques to construct such strings can be considered and
we propose to compare some of them.

3.1 Graph Seriation

From a set of interest points, an attributed graph can be generated thanks to
a Delaunay triangulation (see Figure 2(a)) in which each node of the graph is
described by a local signature describing the image content in the neighborhood
of the node. This graph can then be transformed into a string by a graph seriation
approach [1, 4]. Two kinds of graph seriation are studied in this paper.

Spectral Graph Seriation. In the spectral graph seriation approach, the
string is constructed by only considering the adjacency matrix of the graph and
implicitly its structure. In [4], the authors propose an algorithm which performs
the graph seriation by using the eigenvector φ∗ corresponding to the leading
eigenvalue of the adjacency matrix. Nodes are then ordered in the decreasing or-
der of their magnitude in the leading eigenvector components (see Figure 2(b)).

Similarity Spectral Graph Seriation. In the case of attributed graphs, it
seems relevant to consider nodal values and thus the similarity between them.
The idea was first proposed in [1] where the seriation is performed thanks to
the Fielder vector of the Laplacian matrix. In the following, we propose an
alternative of it.

As in [4], we begin from the node associated with the largest component of
φ∗. Next, we search through the set of the nearest neighbors, the node which
is the most similar to the previous one in the sense of a L2 distance between
the foveal wavelets signatures [13] associated to the nodes being compared. This
step is repeated until all nodes have been visited.

This method permits to generate strings following edges (see Figure 2(c)).
Indeed, a foveal signature characterizes orientation and regularity of an edge,
thus two signatures are similar if they belong to the same edge. Note that this
method is similar to [1] where the Laplacian matrix is replaced by a similarity

(a)Delaunay graph (b) Spectral seriation [4] (c) Similarity seriation (d) Perceptual seriation

Fig. 2. String construction from a spatial distribution of interest points. The orignal
image is shown on Figure 1
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matrix A = [aij ] where aij = d(si, sj) with si being the local signature associated
to the node xi and d the distance between local signatures.

3.2 Perceptual Seriation

The second method presented in this paper consists in building a string by
considering only the saliency values of the detected interest points (see equation
1). In this case, interest points are ordered in the decreasing order of the saliency
value magnitude (see Figure 2(d)).

4 Strings Comparison

Once strings are constructed by one of the methods exposed in section 3, the
last step consists in matching them to assess similarity between images.

4.1 Edit Distance and its Variants

Strings comparison can be first performed by using distances proposed in the field
of automatic spelling correction or texts comparison. Such distances are based
on the work of Levenstein presented in [8]. If we denote by Σ a finite alphabet
and by X = (x1x2...xn) and Y = (y1y2...ym) two finite strings whose elements
are in Σ then the string edit distance D(X, Y ) is the minimum cost needed to
transform X into Y using elementary edit operations. These edit operations are
of three kinds:

– (xi → yj) is the substitution of the symbol xi by yj ;
– (xi → ε) denotes the suppression of the symbol xi;
– (ε → yj) denotes the insertion of the symbol yj .

If a cost function γ is assigned to each of these edit operations, then the string
edit distance can be efficiently computed in O(mn) thanks to a dynamic pro-
gramming algorithm [18] based on the following recursive property:

D(i, j) = min

⎧⎨⎩
D(i− 1, j − 1) + γ(xi, yj)
D(i− 1, j) + γ(xi, ε)
D(i, j − 1) + γ(ε, yj)

(2)

where D(i, j) is the edit distance between the sub-strings (x1...xi) and (y1...yj).
Nevertheless, in [12], the authors show that the classical string edit distance
lacks some normalization because it does not consider the length of the strings
to be compared. For example, if X and Y are two strings of length 2, they can
have the same edit distance as two strings of length 50. However, it seems that
in the second case, they are more similar. Consequently, the normalization of
the edit distance by the length of the edit path was proposed. It leads to the
following definition:

d(X, Y ) = minP

(
W (P )
L(P )

)
(3)
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where:

– P is an edit path from X to Y , W (P ) is the cost of this edit path;
– L(P ) is the length of the edit path.

The computation of the normalized edit distance is performed thanks to a
fractional programming algorithm [17] with the same complexity than the edit
distance algorithm.

Finally, a major improvement of the classical string edit distance is proposed
in [19] where the authors propose to use the neighborhood of each symbol in the
string to compute the distance. This work is based on the Markov field theory
because it is shown that the classical string edit distance algorithm can be seen
as a zero order Markov edit distance.

In the following, we use edit operations costs defined in [13]. The substitu-
tion cost γ(xi, yj) is the L2 distance between the two foveal signatures xi and
yj and the insertion and deletion costs γ(ε, yj) and γ(xi, ε) are defined by the
L2 distance between the foveal signature considered (i.e. yj or xi) and the null
signature (i.e. the signature filled with 0) corresponding to the signature of an
homogeneous region.

4.2 Ordered Histograms-Based Distance

Histograms are known to be very powerful in the case of content-based image re-
trieval [16]. They permit to capture the essential statistics present in the images
and the comparison of them is less expensive than string-based edit distance
algorithms. Consequently, coupling these two approaches for comparing strings
of local signatures can be of interest. In [6], the authors propose a distance which
considers the order and the distribution of symbols present in a string. Never-
theless, this distance must be adapted in the case of strings of signatures whose
values are continuous in a k-dimensional space. For this purpose, we propose to
compute k distances defined in [6], each one for a component in a signature. Then,
we sum them to get the final distance between the two strings. Furthermore, as
underlined in [7], each image can be represented by a different number of salient
points depending on the complexity of the image content. Consequently, the two
strings to be compared can have different lengths breaking thus the triangular
inequality of the distance proposed in [6]. This modification leads to obtain a
dissimilarity measure.

The algorithm proceeds as follows for two attributed strings X and Y :

1: d ← 0
2: for j : 1 to k do
3: Hj

1 ← 0; Hj
2 ← 0;W ← 0

4: for i : 1 to min(m, n) do
5: Hj

1(xi[j])← Hj
1(xi[j]) + (min(m, n)− i + 1) ∗ c(xi[j], yi[j])

6: Hj
2(yi[j])← Hj

2(yi[j]) + (min(m, n)− i + 1) ∗ c(xi[j], yi[j])
7: W ← W + (min(m, n)− i + 1) ∗ c(xi[j], yi[j])
8: end for
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9: d ←∑i |Hj
1(i)−Hj

2(i)|/W + d
10: end for
11: return d

where c(xi[j], yi[j]) is the substitution cost between jth elements of the two
signatures xi and yi and H1 and H2 are respectively the histograms associated
to X and Y . This algorithm is computationally less expensive than a string edit
distance because it computes the distance in O(min(m, n)k). However, it makes
the strong assumption that the two strings to be compared are perfectly aligned.

5 Experiments

In order to compare the different approaches, a supervised image classification
system based on the k-nearest neighbors algorithm has been developed. We use
a training images database which is divided into six clusters (Alps, football, cars,
ships, flowers, space) (see Figure 3), each cluster being composed of 15 natural
images. To test our system, we picked 90 different images that are proposed
to the system for classification (see Figure 4). Regarding the parameters used
during the experiments, the L2 distance has been used to compute c(xi[j], yi[j])
in the ordered histograms-based distance algorithm (see section 4.2) and the
histograms Hj

1 and Hj
2 are composed of 100 bins.

We have firstly compared the classification results obtained by each distance
presented in section 4 for each seriation algorithm separately. Figure 5 presents
the classification rates obtained by each method using different number of in-
terest points and the computing times needed to compare two images using the
different distances on a Pentium IV 3GHZ. It is clear that ordered histograms
distance outperforms all other distances proving that the strong assumption dis-
cussed before is not so hard. Moreover, ordered histograms distance is compu-
tationally more efficient and it is essential in the case of large images databases.
However, the main reason of these better classification rates is that our insertion
and deletion costs for the edit distances are not well adapted and so they degrade

Fig. 3. Some image samples present in the training database

Fig. 4. Some image samples present in the test database
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Fig. 5. Comparison of distances for the three seriation approaches
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Fig. 6. Comparison of seriation methods

results. Thus, it could be interesting to take into account the probability density
function of the foveal signatures in a cluster in order to define these edit costs.

If we compare the three seriation approaches using only the ordered his-
tograms based distance (see Figure 6), we can see that the perceptual seriation
gives the best result when more than 200 interest points are used. Nevertheless,
classification rates are not so different. Finally, if we consider computing times,
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it seems not relevant to use graph seriation approaches because they do not im-
prove classification rates compared to a perceptual approach and they are more
complex.

Finally, it is important to note that when color is not able to discriminate a
cluster, our approach is well suited. In the dataset we used, it appears to be the
case for the cars and ships clusters which obtain respectively 41% and 38% of
good classification rates with a global histogram approach whereas our method
permits to obtain 85% and 54% for 400 interest points.

6 Conclusion and Perspectives

In this paper, we have presented a comparison of seriation techniques and string
distances that can be used in the case of a natural images classification task
using foveal signatures. It has been shown that histograms-based distance gives
better classification rates than the others edit distances presented. Nevertheless,
it could be interesting to implement a training algorithm as in [6] in order to
learn the edit costs which are very difficult to establish and on which depends
critically the classification rates.

It has also been shown that seriation approaches give approximately the same
classification rates indicating that string order is not very important in the recog-
nition task. However, it could be interesting to implement the same approach in
order to perform small substring matching and it is quite sure that we are also
interested in other seriation approaches.
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Abstract. This paper proposes a new possible way to represent a sym-
bolic graph pyramid built by successive applications of some rules. This
representation is targeted for learning the rules, since it contains infor-
mation about which rules were applied, but also because it can be used
to easily define the space of all possible pyramids as a reduction tree. We
also consider restraining the possible rules to some basic ones in order
to make the reduction trees easy to build, and a way to use them for
learning will be presented.

1 Introduction

The growth of computing capability of modern computers allows us to use more
and more complex tools for pattern recognition. They include graph representa-
tions, among which hierarchical graphs which are the main frame of this work.
Hierarchical graphs, or graph pyramids, have already been the purpose of many
works for this kind of application, like in [3, 5, 4, 1, 2].

In [6], we proposed a way to build pyramids with symbolic features by using a
set of rules considering both the structure and the data. The building process con-
sisted in going through three phases for each level: an exploration phase, which pur-
pose was to produce all the possible reduction hypotheses that apply to the graph,
a selection phase, that was used to keep the best set of compatible hypotheses, and
then a reduction phase in which the selected hypotheses were applied.

This process involved complex rules which should be learned. The scope of
this paper is to deal with the learning process. It is a theoretical work, in which
we propose to represent the pyramid as a string of hypotheses. This allows us to
define a structure representing the space of all the possible pyramids. Then the
learning process will consist in searching the best element in this space.

The first part of this paper deals with the definition of those strings of hy-
potheses, or reduction strings. The second part will define the reduction trees,
which are the structures representing all the possible reduction strings. Then we
will define some simple rules, less complex than the one we used in our previ-
ous work but more appropriate for building the reduction trees. Finally, we will
explain how they are used for learning.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 82–91, 2005.
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2 Reduction Trees

2.1 From Pyramids to Reduction Strings

Let G0, . . . , Gn be the levels of a pyramid, e.g. a hierarchy of graphs, built
by the process described in the introduction. For any i > 0, let hi

1, . . . , h
i
n(i)

be the hypotheses selected during the selection phase for building level i. By
construction, for each i > 0, we know that the hypotheses hi

j (j ∈ [[1, n(i)]]) are
compatible, which means that we can apply them in any order (or in parallel).

The sequence Ri = hi
1, . . . , h

i
n(i) will be called a reduction string from Gi−1

to Gi. It contains all the information needed for building level i from level i− 1.
We can also notice that any permutation of a reduction string from Gi−1 to Gi

is still a reduction string from Gi−1 to Gi.
The concatenation of all the reduction strings R1, . . . ,Rn results in a se-

quence of hypotheses which, when applied in this order, allows us to build the
top Gn of the pyramid from its base G0. Such a sequence will be called reduc-
tion string from G0 to Gn, or complete reduction string of the pyramid. Note
that a permutation of a complete reduction string may not be a complete reduc-
tion string. The complete reduction string is an alternative way to represent the
whole pyramid without having to store all the individual graphs: they contain
both the contraction kernels, as defined by W. Kropatsch in [4], and the symbols
to put in the contracted nodes. Figure 1 illustrate how reduction strings relate
to the graph pyramids.

2.2 Standard Reduction Trees

Let G be a level of the pyramid, and H the set of all the possible hypotheses
applicable to graph G (the ones produced during the exploration phase of the

{h1
1, . . . , h

1
n(1)}

{h2
1, . . . , h

2
n(2)}

{hN
1 , . . . , hN

n(N)} Reduction strings:

– From G0 to G1:

R1 = h1
1, . . . , h

1
n(1)

– From G1 to G2:

R2 = h2
1, . . . , h

2
n(2)

– Complete reduction string:

R = h1
1, . . . , h

1
n(1)︸ ︷︷ ︸

R1

, h2
1, . . . , h

2
n(2)︸ ︷︷ ︸

R2

, . . . , hN
1 , . . . , hN

n(N)︸ ︷︷ ︸
RN

Fig. 1. Pyramids and reduction strings
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First level

Hypotheses compatible with H

Possible second level

by applying recursively the
same process from this node.

We can continue the tree

H

Exploration Process

Fig. 2. Standard reduction tree

reduction process). The reduction tree of level G is the tree that represents all the
possible reduction strings from graph G to any possible next level G′ as paths
from the root to the leaves. It can be built by induction using the following
algorithm:

– Depth 0: the root is not labelled
– Depth 1: there are |H| elements of depth 1, each of which is labelled by one

element of H.
– If depth i is built, depth i + 1 is built as follows: for each node s of depth

i, let Hs be the hypotheses which label all the brothers of s, and H∗
s the

subset of Hs containing only the hypotheses which are compatible with the
hypothesis of s. Then the node s has |H∗

s | children, each of which is labelled
by an element of H∗

s (if H∗
s = ∅, then s has no child and is a leaf).

See figure 2 for an illustration of a standard reduction tree.
For each leaf s of the reduction tree of level G, the path from the root to s

defines a reduction string, which once applied to graph G produce a new graph
Gs. We can then repeat the process for each Gs, with leaf s becoming the root of
the reduction tree of level Gs, and so on, until no more hypothesis can be found.
The resulting tree is called the standard reduction tree of graph G, and the paths
from the root to the leaves represent all the possible complete reduction strings
of the pyramids of base G.

2.3 Extended Reduction Trees

The standard reduction trees represent all the possible reduction strings for a
given graph G, and so will be useful in the learning process as they define a
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First level

Hypotheses compatible with H

H

Exploration Process

New hypotheses generated
by local exploration

Fig. 3. Extended reduction tree

possible search space. But their construction is not regular, since some nodes
in the tree are built by keeping compatible hypotheses from previous levels,
whereas some other nodes are built by running an exploration phase. We propose
another approach combining both a selection of compatible hypotheses and a
local exploration for each level of the reduction tree, so that the construction of
the tree is regular.

The extended reduction tree is built using the following algorithm:

1. Root has no label, and has a child for every hypothesis produced by the
exploration algorithm over the initial graph.

2. For each node s at depth i, we build its children as follows:
– We create a child for every hypothesis from the brothers of s that is

compatible with the hypothesis of s.
– We then do a local exploration for finding all the new hypotheses that

can be produced once the hypothesis of s has been applied. We create a
child for any of those hypotheses.

– If no child has been created by both of these two steps, s is a leaf of the
extended reduction tree.

3. We repeat step 2 for depth i + 1, until every node at depth i is a leaf.

The standard reduction tree is a subgraph of the extended reduction tree,
which means that the latter allows us to consider some reduction strings that
could not be considered if we used the former. They correspond to consecutive
application of rules to the same region of the graph, which could not occur in
the standard construction process. For that reason, a reduction string obtained
from an extended reduction tree cannot always be equivalent to a pyramid built
by the standard process. Figure 3 shows an example of an extended reduction
tree.



86 M. Melki and J.-M. Jolion

3 Basic Rules

Extended reduction trees can be useful since they not only offer more possible
reduction schemes than the standard ones, but they are also more convenient
to build provided that the local exploration can easily be done. That is why we
proposed to use some basic rules instead of the complex ones we used in our
previous works. The complex rules can be emulated by applying sequentially
many of those basic ones.

3.1 The Rules

We will use three kinds of basic rules:

1. Relabelling rule: it transforms symbol S into symbol D without doing any
contraction (notation: S → D).

2. Contextual rule: it transforms symbol S into symbol D, only if the node
to which it is applied has a neighbor with symbol S′, without doing any
contraction (notation: S + S′ → D + S′).

3. Contraction rule: it contracts a node with symbol S and one of its neighbor
that has symbol S′, and the resulting node gets symbol D (notation S+S′ →
D).

3.2 Complex Rules

In order to emulate more complex rules like the ones introduced in [6] , we will
need to add some new symbols, the temporary symbols, to the symbol set. Then,
we will need to consider four sets of (basic) rules:

1. The initialization set, which usually contains only one contextual rule. This
rule will identify one part of the configuration, and will mark one node with
a temporary symbol.

2. The propagation set, which only contains contextual rules. Those rules will
identify the whole configuration by marking any node of the configuration
with a particular temporary symbol by propagating information.

3. The contraction set, which contains the contraction rules that are used to
contract the contraction kernel of the complex rule. For complex rules whose
contraction kernel is empty, the contraction set contains only one relabelling
rule.

4. The restoration set, which contains the relabelling rules used to replace the
remaining temporary symbols by the original symbols in the nodes.

To apply a complex rule, we will first apply the rule from the initialization
set, which will introduce some temporary symbols in the graph. Then, the rules
from the propagation set will be applied and will propagate temporary symbols
through the whole configuration of the rule. A particular temporary symbol
should then be produced by the last applicable propagation rule, which will
make the rules from the contraction set applicable. Finally, the rules from the
restoration set are applied to put the graph in the correct state. Note that if the
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AO

B

C

D

E

F

G

H

– Initial rule:
0 + A ← εO

– Propagation rules:

A + εO → εA + ε0 E + εA → εE + εA

εA + εE → ε′
A + εE εO + ε′

A → ε′
O + ε′

A

B + ε′
O → εB + ε′

0 F + εB → εF + εB

εB + εF → ε′
B + εF ε′

O + ε′
B → ε′′

O + ε′
B

...
...

– Contraction rules:

ε′′′′
O + ε′

A ← S′′′′ S′′′′ + ε′
B ← S′′′

S′′′ + ε′
C ← S′′ S′′ + ε′

D ← S

– Restoration rules:
εE ← E εF ← F εG ← G εH ← H

Fig. 4. From complex rules to basic rules (S being the output symbol of the rule)

particular temporary symbol is not produced by the last propagation rule, the
complex rule is not applicable. In that case, we have to go back in the reduction
string up to the rule from the initialization set, and try to select another rule.
Figure 4 illustrates how a complex rule is transformed into elementary basic
rules, and Figure 5 shows how the rules are applied on a graph to produce the
correct result.

In order to get the correct behavior with minimal special treatment, we de-
cided to split all the basic rules we use into four sets, which correspond to the
sets we have described (though the first set will both contain the rules from the
initializing sets of the complex rules, and the individual basic rules). Rules get
priority depending on which set they are in (the usual priority mechanism still ap-
plies within each set though), in the following order, from the higher to the lower
priorities: contraction set, propagation set, restoration set, initialization set.

3.3 Transformation Cycles

We also need a mechanism for preventing cycle in the transformations sequence in
order to get finite reduction strings. Since contraction rules decrease the number
of nodes in the graph and no other rule can increase it, they are not involved into
cycles, and we will only have to consider sequences of relabelling and contextual
rules.

During building process, rules are applied according to their priority, so that
if the graph returns to in the same state after some rules where applied, the
same hypotheses will apply again in the same order. This means that we can
detect cycles in the reduction process by finding cycles in the reduction string.
This can easily be done using standard string search algorithms into the part of
the reduction string from the last contraction rule to the end of the string. Each
time a cycle is detected we remove the cycle from the reduction string and select
another hypothesis.
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Left: initial graph, right: initial rule applied (circles are used to represent temporary
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Fig. 5. How the rules from figure 4 apply

But during the learning process, the selection of the rules to apply may not
be the same in each occurrence of the cycle. As only strings of relabelling and
contextual rule can contain cycle, and since those two kinds of rules do not change
the graph but only the labels in the nodes, we just have to consider how the labels
evolve to detect cycles. This can still be complex, specially if the graph has many
nodes, and so we need a more efficient solution. One possibility is to limit the
size of sequences with no contraction rules: if a branch of the reduction tree that
is being built (cf. next section) contains too many contextual or relabelling rules,
the branch is deleted.
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4 Learning Process

The goal of the learning process is to set the weights of the rules in such a way
that the paths of the reduction tree corresponding to the strings that produce
the best results according to the ground truth are promoted. Unfortunately the
full reduction tree is usually too big to be built, so we have to build only parts
of it using the current weights of the rules.

The learning is done by the following process:

1. We build a part of the reduction tree using current weights of the rules to
know which branches to build.

2. Then, we promote the rules of the branches leading to the best results,
whereas we dismiss the rules of the branches leading to the worst results

3. We repeat step 1, using the new weights.

4.1 Construction of a Partial Reduction Tree

In order to prevent the exponential growth of the reduction tree, we use the
following algorithm to build a partial tree. Each node s contains a label h(s)
which is the hypothesis that should be applied if we go through this node. It
also corresponds to the graph G(s) resulting from the application of the reduction
string obtained by following the path from the root of the graph to s. It also
contains a set of applicable hypothesesH(s). Finally, it contains the length l(s) of
the sequence of contextual and relabelling hypotheses since the last contraction
hypothesis.

1. Root r has the following properties: h(r) = ∅, G(r) = G0, H(r) is obtained
by applying the exploration process on graph G0, and l(r) = 0.

2. For each node s in the last computed depth:
– Select K hypotheses h1, . . . , hK from H(s) (using both their priority and

a random decimation).
– For each hi, if hi is a contraction hypothesis, s gets a son si such that

l(si) = 0, h(si) = hi, G(si) is the graph obtained by applying hi on
G(s) and H(si) is obtained by keeping all the element of H(s) which are
compatible with hi, and adding all the hypotheses produced by the local
exploration on graph G(si).

– For each hi, if hi is not a contraction hypothesis and l(s) < M , s gets a
son si such that l(si) = l(s)+1, h(si) = hi, G(si) is the graph obtained by
applying hi on G(s) and H(si) is obtained by keeping all the elements
of H(s) which are compatible with hi, and adding all the hypotheses
produced by the local exploration on graph G(si).

3. Among all the nodes produced during step 2, only the best N nodes (for
example the one which leads to the bigger receptive fields) are retained, the
other being deleted.

4. Step 2 is repeated until N ′ branches have reached their end, or the depth of
the tree has exceeded a certain fixed value.
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(in this algorithm, M is the maximal length of contextual and relabelling rules
string, N is the maximal number of branches that are allowed to live at a certain
depth, N ′ the maximal number of branches to consider and K the maximal
number of sons to consider for any node)

4.2 Weights’ Correction

Once a partial reduction tree has been built, we will use it to modify the pri-
orities of the rules that were involved. For each branch, we consider the graph
corresponding to the leaf of the branch, and a distance between that graph and
the one from the ground truth is computed (e.g. a graph edit distance). Depend-
ing on this distance, we modify the weights of the rules corresponding to every
hypothesis present in the branch. If some rule is involved in many branches, the
better the branch, the more its influence is taken into account.

A possible extension would be to determine which hypothesis leads to some
graph incompatible with the ground truth in order not to consider the following
hypotheses in the reduction string, or to give them higher penalty.

5 Conclusion

The representation we choose to use is the reduction strings. This is because
during the learning process, we need to keep track of all rules that were used
when the pyramid was built, which means that we need a lot of extra information
beside the pyramid itself. Since we found that this extra information is indeed
redundant with the pyramid, we choose to keep only it as a representation for
the whole pyramid. Reduction string is a simple way to represent it, as they give
the contraction kernels that are needed to build any level of the pyramid. This
means that we can still build a pyramid from the chains if we need to consider
all the graphs, for example after the learning process is finished.

We then showed that the space of all possible reduction string can be repre-
sented by a tree, the reduction tree, that can be used as the search space when
we do learning. We also found out that it is possible to both extend the expres-
siveness of the tree and make it more easy to built at the same time, provided
that we use the basic rules we proposed to simplify the local exploration. Also,
the set of possible basic rules is limited, so it is theoretically possible to consider
all of them, and even though their number is too high to really do that, we can
still define some process to make the considered rules change dynamically.

The learning process itself consists in finding the best element from the search
space (the set of all possible reduction strings, represented by the leaves of the
reduction tree). Unfortunately, this need to build the whole reduction tree, whose
size grows exponentially. So we need some search algorithm like the one that was
described in section 4. It builds a limited size subtree of the whole reduction tree,
using the current weights of the rules to choose which branches to look at.

One thing now to consider is the number of rules and symbols (especially
temporary symbols needed to emulate the complex rules with the basic ones)
that are needed for solving some simple problems, like digit recognition. This is
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especially important, as the number of rules is directly linked to the whole com-
plexity of the building process, and to the speed of convergence of the learning
process which has to be evaluated. Finally, it would also be interesting to look
at how to add or remove rules from the list of considered ones.
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Abstract. Representing the regions of a segmented image is an impor-
tant aspect of image segmentation. Several different models have been
proposed to represent the regions of a segmented image but most of
them are dedicated to a specific method. Among the non hierarchical
models, the model of planar maps with discrete embedding is certainly
the most versatile one. Maps have the great advantage to provide a con-
tinuity of representation from the abstract mathematical model to the
concrete implementation. They encode and provide most of topological
and geometrical features required by segmentation algorithms and can
be efficiently updated. In this paper we give an overview of the use of pla-
nar maps with discrete embedding in the context of image segmentation
and we show how to design, implement and use a general environment
for 2D image segmentation, from the mathematical model up to a real
application. The model, data structure, algorithms and API described in
this paper are currently implemented in a software which will be avail-
able under LGPL in the course of year 2005.

Keywords: Image representation, image segmentation, combinatorial
maps, discrete boundaries, feature extraction.

1 Introduction

Representing the regions of a segmented image is an important aspect of image
segmentation. On the one hand the representation provides the features used
to build the decomposition of the image into homogeneous regions. Thus the
description of the decomposition must be powerful enough to allow to extract
any required feature. On the other hand segmentation process generally build
solutions by refining progressively the decomposition. Thus the model used to
described regions must be efficiently updated all along the segmentation steps.
The simplest way to get an efficient model is to specialize it according to the
minimal set of operations required by a specific method. But such a model is
shown to be too restrictive to implement more general methods. Efficiency and
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versatility are thus two objectives which are hard to conciliate and when many
models have been proposed to represent the regions of a segmented image, most
of them are dedicated to a specific method.

The most basic method to represent segmented images is the array of la-
bels [38, 76, 65] which consists in associating each pixel with a label such that
all the pixels sharing a same label belong to a same region. This structure is
very simple to implement but is ill-adapted to region splitting which involves a
relabeling of all the pixels of the new sub-regions. Moreover this model does not
efficiently provide topological features.

Hierarchical data structures allows to process images at different level of reso-
lution. Several hierarchical models have been proposed such as quadtrees [46, 37,
72, 2], pyramids [77, 11, 82], irregular pyramids [61, 63, 57], linked pyramids [67,
48], dual pyramids [56], and more recently combinatorial pyramids [27]. Such
data structures are very efficient to implement top-down region based algorithms.
Starting at a coarse level of resolution, the initial image partition can be refined
from level to level until reaching the resolution level of the original image. Never-
theless the hierarchical organisation of data restricts the possibilities of merging
(and thus of interactive editing) and features like boundary geometry or neigh-
bourhood are not immediate to extract.

Among the non hierarchical models, the model of embedded planar maps, or
topological maps with discrete embedding [18, 49, 36, 39], is certainly the most
versatile one. Embedded maps encode both the geometry and the topology of
the regions of a segmented image and allow free region editing, splitting, and
merging. They are more general than region adjacency graphs [47, 74] which
have no geometric embeddings, which does not encode the whole topology of
the segmented image, and which are ill-adapted to splitting. Two dimensional
planar maps have been used for image editing [18, 4, 43, 19, 36], for image seg-
mentation [49, 39, 23, 40, 14, 53] and for video processing [5, 6, 55]. Maps have
been generalized in the context of topological based scene modeling and in order
to represent n-dimensional spaces [58], and several recent works have addressed
the problem of the representation of 3D discrete images with maps for 3D image
segmentation [16, 7, 33, 34, 12].

In the context of 2D image analysis, embedded maps provide an efficient
framework to implement most of the operations involved by segmentation algo-
rithms [25], such as domain reconstruction (or restoration) [71] which consists in
traversing each point of the region domain, region splitting and merging, point
inclusion or point membership property [60, 30] which consists in determining
if a point is located inside or outside a given region, region localisation which
consists in finding the region containing a given point, obtaining of geometric
features (such as area, perimeter, boundary shape, etc.) [70, 30, 68] and of topo-
logical features (neighbourhood, surroundness [70], regions inside or outside a
given boundary, counting holes [64, 69], etc.).

In this paper we give an overview of the use of planar maps with discrete em-
bedding in the context of image segmentation. Maps have the great advantage
to provide a continuity of representation from the abstract mathematical model
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to the concrete implementation. We would like to illustrate that by showing how
to design, implement and use a general environment for 2D image segmentation,
from the mathematical model up to a real application. In the following section
we recall how to represent the topology of a continuous segmented image with
a set of planar maps. In section 3 we show how to associate such a set of maps
with discrete boundaries and thus how to use this model to represent and seg-
ment discrete images. In sections 4 and 5 we briefly describe data structures and
algorithms to use this model in the context of image segmentation. In section 6
we specify a small API that is enough to implement most of split and merge
segmentation methods. Finally in section 7 we describe a full example of con-
strained segmentation method designed with this API to solve a real problem in
the context of medical imaging.

2 Representing Regions

A segmented image is a partition of an image into a set of regions, each region
being a connected subset of points of the image. In the Euclidean plane a region is
simply connected when its boundary is a simple closed curve also called Jordan’s
curve.1 Remark that a Jordan’s curve defines two regions: a bounded region
without hole which is called the inside region, and its complement which is an
unbounded region with a hole which is called the outside region. When a bounded
region is not simply connected, it has some holes and its boundary consists of
several Jordan’s curves, one of them — the outer boundary — surrounding all
the other ones — the inner boundary.

Consider the example developed in Fig 1. The image of Fig 1-a can be seg-
mented into seven regions each one being a homogeneously textured area. The
region boundaries have been drawn in white on the image. The wide region lo-
cated in the bottom of the image, say A, is a simply connected region and its
boundary consists of a unique Jordan’s curve. On the other hand the background
is a bounded region with two holes and thus is not simply connected. Its outer
boundary is the boundary of the image and its inner boundary consists of two
Jordan’s curves, one of which being the outer boundary of the region A and the
other one being the largest oval-shaped contour.

In the Euclidean plane the boundaries of the regions of a segmented image
can be partitioned in a natural way according to their neighbouring. Consider
for instance the both small half-oval shaped regions of the running example.
Both these regions share a part of boundary which is an horizontal line. Thus
the boundary of these regions can be split into three segments of boundary
which are respectively the horizontal line shared by the both regions, the part of
boundary which is adjacent to the upper region and not to the lower one, and the
part which is adjacent to the lower one and not to the upper one. Each segment
of boundary is a Jordan’s arc (a set of points homeomorphic to the real interval
[0, 1]). This decomposition induces a graph the edges of which correspond to the

1 A Jordan’s curve is a set of points homeomorphic to the real interval [0, 1].
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Jordan’s arcs and the vertices to the segment junctions. The graph induced by
the boundaries of the segmented image of Fig 1-a is the graph shown in Fig 1-b.
This graph has height vertices labeled from a to h and eleven edges. Remark
that it is necessary to add an arbitrary vertex to associate with a graph edge
the outer boundary of an isolated region. For instance the vertices labelled by
a and h have been arbitrarily added on respectively the outer boundary of the
image and the outer boundary of the region A.

A partition of the Euclidean plane into simply connected region is called a
topological planar map, or simply a planar map. More formally a planar map [78]
is a decomposition of the Euclidean plane into a finite set V of points, a finite
set E of disconnected open Jordan’s curves, each one having its extremities in
V , and a finite set of simply connected regions whose boundaries are unions of
elements of V and E. The elements of V and E are respectively the vertices and
the edges of the map, and each simply-connected region is called a face. The
faces corresponding to bounded regions are called the finite faces and the face
corresponding to the unique unbounded region is called the infinite face.

Each connected component of the boundary graph of a segmented image is
thus a planar map. For instance on the running example the boundary graph is
decomposed into four planar maps which are the subgraphs defined respectively
on the set of nodes {a}, {b, c}, {d, e, f, g}, and {h}. The second one has two
vertices, three edges (labeled by 8, 9, and 10) and three faces, two finite faces
which are the face surrounded by the sequence of edges (8, 9) and (8, 10), and
an infinite face the boundary of which is the sequence (9, 10).

A topological map can be efficiently encoded by a pair 〈σ, α〉 of permutations
defined on a set of labels called darts. Each dart can be seen as an half-edge of
the topological map. Given an orientation of the plane, say counterclockwise, a
vertex v of the map is describe by a circular sequence (d1, d2, . . . , dn) which is the
sequence of darts reaching it. This sequence is a cycle of the permutation σ and
the notation (d1, d2, . . . , dn) is a shortcut for σ(d1) = d2, . . . , σ(dn−1) = dn, and
σ(dn) = d1. The permutation σ is the set of all such cycles. The permutation α is
an involution without fixed point (each cycle is of length 2). Each cycle (d, α(d))
of α encodes an edge of the map by linking two darts. Such a representation is
called a combinatorial map [32].

If π is a permutation and x is an element which has an image by π, we denote
by π∗(x) the cycle of π that contains x. According to this notation, σ∗(d) (resp.
α∗(d)) is the vertex (resp. the edge) that contains the dart d.

It may be convenient to encode the darts by positive and negative integers
such that α(d) = -d [19]. According to this convention, a representation of the
four combinatorial maps of the running example is shown in Fig 1-c. The set of
darts is the set { -11, . . . , -1, 0, 1, . . . , 11}. The related permutations are:

– σ1 = ( -1, 1) and α1 = ( -1, 1);
– σ2 = (8, 9, -10)( -8, 10, -9) and α2 = ( -8, 8)( -9, 9)( -10, 10);
– σ3 = (-2, 4, -7)(3, -5, -4)(5, 6, 7)(2, -6, -3) and α3 = (-2, 2)(-3, 3)(-4, 4)(-5, 5)

( -6, 6)( -7, 7);
– σ4 = (11, -11) and α4 = ( -11, 11).
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Fig. 1. Representation of the topology and of the geometry of a segmented image: (a)
a segmented continuous image with its region boundaries, (b) the associated boundary
graph, (c) the representation of this graph by combinatorial maps, (d) a discrete seg-
mented image with the same topology, a representation of the geometry of regions (e)
with pixel based contours, and (f) with interpixel contours
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A face the map is encoded by the circular sequence of darts encountered
when turning around the face, clockwise for a finite face and counterclockwise
for the infinite one. For instance the map 〈σ3, α3〉 has four faces which are the
cycles (-2, -6, 7), (5-4, -7), ( -5, 6, -3) and (4, 3, 2) (see also Fig. 2-a). The infinite
face (in this case the last one) represents the unbounded region of the Euclidean
plane which is the complement of the union of all the finite regions.

A given combinatorial map 〈σ, α〉 may be associated with several different
topological maps. That means that there are different ways to draw a combina-
torial map on the plane. In fact there as many topological maps as there are faces
in the combinatorial map. To draw a combinatorial map consists thus in first
deciding which face is the infinite face and then to organize vertices and edges
according to this choice. Once the infinite face is set, all the possible drawings
are topologically equivalent.

A remarkable property of combinatorial maps is that the faces of the map
〈σ, α〉 are encoded by the cycles of the permutation ϕ = σ ◦ α. Consider for
instance a dart of the map 〈σ3, α3〉, say the dart -2. The cycle of -2 in the
permutation ϕ is the circular sequence (σ ◦ α)∗( -2). We have σ(α( -2)) = -6,
σ(α( -6)) = 7, and σ(α( -7)) = -2. The cycle ϕ∗( -2) is thus the finite face
( -2, -6, 7).

The permutations ϕ and σ are defined on the same set of darts and the
tuple 〈ϕ, α〉 is also a combinatorial map. Moreover the maps 〈σ, α〉 and 〈ϕ, α〉
are dual. The orientation apart the dual map can be drawn by associating with
each face of the primal map a vertex of the dual map, and by intersecting each
edge of the primal map by an edge of the dual map, both edges being defined
by the same pair of darts. For instance, on the running example, the dual map
of 〈σ3, α3〉 is the map 〈φ3, α3〉 with φ3 = ( -2, -6, -7) (5, -4, -7)( -5, 6, -3)(4, 3, 2)
and α3 = ( -2, 2)( -3, 3)( -4, 4)( -5, 5)( -6, 6)( -7, 7) (see Fig. 2-b). Let us underline
that a dual map encodes the adjacency of the regions of a segmented image in a
more general way than a region adjacency graph does, since there is in the dual
map an edge for each segment of boundary shared by two adjacent regions.

Combinatorial maps are a very simple and elegant formalism to describe
both planar maps and operations defined on them. For instance, on the running
example, removing the edge (−5, 5) consists in merging the face containing the
dart 5 which the one containing the dart -5, i.e. the faces (-5, 6, -3) and (-7, 5, -4).
This operation may be defined either on the map 〈σ, α〉, by setting σ′(3) = -4
and σ′(7) = 6, or on the map 〈ϕ, α〉, by replacing both cycles ( -5, 6, -3) and
(5, -4, -7) by the cycle (6, -3, -4, -7) (see for instance [19, 36, 23, 24, 26] for a
formal definition of these operations).

Remark that neither the vertices nor the edges need to be explicitly encoded.
Each vertex, edge or face may be represented by any dart of the permutation
cycle that represents it. Moreover by taking α(d) = -d the permutation α has
not to be stored. So a combinatorial map, and thus a topological map, can be
implemented with only an array of integers the size of which is twice the number
of edges of the map.
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Fig. 2. The map 〈ϕ, α〉 of Fig. b is obtained by defining a vertex for each face of the
map 〈σ, α〉 of Fig. a and by crossing each edge of the map 〈σ, α〉 by an edge defined
by the same pair of darts. The resulting graph is a representation of the map 〈ϕ, α〉
according to an inverse orientation (or of the map 〈ϕ−1, α〉)

It is noticeable that the same construction provides both a mathematical
tool for formal proof and an efficient data structure for implementation pur-
pose. Finally we may chose to implement either the primal representation or the
dual one, each of then being obtainable from the other one with a negligible
computational overhead.

Since a map encode the topology of only one connected component of the
boundary graph, there are as many maps associated with the boundary graph
as there are connected components. It is thus necessary to encode how these
maps contribute to the representation of the topology of a non simply connected
region of the segmented image.

It is of course possible to define an inclusion tree which nodes are the regions
of the segmented image [64, 44]. Nevertheless it is enough to encode the inclusion
for only the infinite faces. It may be done in a straightforward way by adding
to the model an inclusion relation which associates the finite face corresponding
to the outer boundary of each non simply connected region with the list of
the infinite faces corresponding to the outer boundary of the holes this region
contains. The finite face is called a parent face and the infinite ones the associated
children faces. For instance the inclusion relation of the four maps of Fig 1-c may
be described by the relation: (1, -11), (1, 4), ( -6 -10).

Of course this encoding is not unique since any dart of a face cycle may be
used to define the relation. We shall see in the next section that it is convenient
to associate a label which each face. The relation of inclusion will then be defined
in a unique way according to this labeling. Note that operations on maps may
also modify this relation [36, 23, 26].

3 Representing Discrete Regions

In order to use combinatorial maps with discrete images it is necessary to get a
representation of a discrete segmented image that can be associated with a set
of planar maps. It requires the decomposition of a segmented image into discrete
correspondents of vertices, edges and faces.



Representing and Segmenting 2D Images by Means of Planar Maps 99

Discrete boundaries can be defined either in the image domain as pixel based
contours [42, 62, 66, 71, 30] or in a discrete space different of the image space as
interpixel contours [22, 71, 52, 54, 10, 50, 17]. Pixel based contours have several
drawbacks when used to represent the boundaries of a segmented image. For in-
stance if boundary segments are part of image regions a given boundary segment
belongs to only one of its neighbouring regions, and if boundary segments are not
part of image regions, the set of regions does not define a partition of the image.
On the other hand, the interpixel representation provides a consistent topological
framework [1] and makes it possible to define in a natural way discrete analo-
gous of the edges of the boundary graph [17, 36]. On the running example of
Fig 1, a discrete discrete segmented image is displayed in Fig 1-d. The pixels are
represented as colored unit square and the regions are the maximal 4-connected
component. The image of Fig 1-e shows an example of boundaries defined with
pixel contours and the one of Fig 1-f an example of interpixel boundaries which
is compatible with the boundary graph of Fig 1-b.

Intuitively interpixel boundaries are drawn between pixels. If the image plane
is the discrete space Z× Z, the boundary plane is the half-integer plane which
is obtained by translating the discrete plane Z× Z by (− 1

2 ,− 1
2 ) [17]. A point

p = (xp, yp) of the image plane and a point p′ = (x′
p, y

′
p) of the boundary plane

are half-neighbours if |xp − x′
p| = |yp − y′

p| = 1
2 . Each point of the image plane

has four half-neighbours in the boundary plane and each point of the boundary
plane has four half-neighbours in the image plane. Finally two adjacent points
of the boundary plane share exactly two half-neighbours in the image plane.

Each point of the boundary plane having two or more half-neighbouring
points belonging to different regions of a segmented image is a boundary point.
Two adjacent boundary points are linked if their common half-neighbours belong
to different regions, and the rank of a boundary point is the number of bound-
ary points linked to it. Two boundary points b and b′ are connected if there is a
boundary path (or contour) linking them [20].

The boundary ∂r of a region r is the set of boundary points adjacent to both a
point inside r and a point outside r. It consists of four-connected closed paths of
boundary points. Each path is a sequence of boundary points b1, b2, . . . , bn with
n > 1 and such that bi is linked to bi + 1 ∀i with 1 ≤ i < n, and bi �= bj , ∀i, j
with i �= j. It can be shown that such boundaries are discrete Jordan’s curves
by embedding both the boundary and the image planes into the Khalimsky’s
plane [50, 51].

According to these definitions the boundary of a discrete segmented image
can be decomposed into segments and nodes in the same way than the boundary
graph of a continuous segmented image can be decomposed into edges and ver-
tices. The nodes are either natural nodes or arbitrary nodes. Natural nodes are
the boundary points of rank greater than two. Arbitrary nodes are points arbi-
trary selected on each boundary component consisting of a unique closed contour
(one arbitrary node selected for each closed contour). A segment is then a max-
imal contour without node. On the example of Fig. 3, the boundary points are
displayed with disks. The nodes are boundary points displayed with grey disks.
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Fig. 3. Example of interpixel boundary defined in the half-integer plane

Fig. 4. Examples of geometric smoothing of interpixel boundary

There are two nodes, each one of rank 3, and three segments. On this example
both nodes are natural nodes.

Now a segmented image associated with a boundary plane can be partitioned
into a set of nodes, a set of discrete Jordan’s curves joining two nodes, and a
set of 4-connected regions. If all regions are simply connected, such a structure
is the discrete analogous of a topological map and is called a topological map
with discrete embedding, or a discrete map. When some regions are not simply
connected, there are several discrete maps associated by an inclusion relation as
there are several topological maps in the Euclidean case.

Like topological maps, discrete maps can be described by pairs of permuta-
tions. The analogous of a dart of a combinatorial map is a geometrical dart. Each
geometrical dart is associated with an end of segment. Is p is a boundary point
at the end of a segment and n the node linked to p the associated geometrical
dart is the pair (p, δ) where δ is the elementary direction from n to p. By this
way a discrete map induces a combinatorial map defined as follows:
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– each geometrical dart of the discrete map is associated with a dart of the
combinatorial map;

– each pair of dart associated with the two geometrical darts of a same segment
forms a cycle of the permutation α;

– each sequence of darts associated with a sequence of geometrical darts shar-
ing a same node forms a cycle of the permutation σ, according to the order
of the geometrical darts around the node [20].

It is thus possible to represent discrete segmented images by associating a
usual topological representation with a discrete geometrical one. The main draw-
back of this model is the poor visual aspect of the boundaries which are defined
as 4-connected path. This problem has been solved by introducing a reversible
geometric smoothing called Euclidean paths [81, 79, 21] in which each point of
the path is moved inside its unit cell by projecting it onto a local discrete tangent.
The resulting path is a smoothed path the sampling of which gives back exactly
the starting discrete path. Enlargements of a discrete interpixel boundary and of
its associated Euclidean path are displayed in Fig. 4-a and Fig. 4-b. It is possible
to smooth by this way all region inter-pixel boundaries of a segmented image
and it can be shown that the topology of the boundary is not altered by this
smoothing [15]. The image of Fig. 4-d is an example, displayed at scale 1, of re-
versible geometric smoothing of the 4-connected interpixel boundaries displayed
in Fig. 4-c.

4 From Model to Data Structure

The next step to get an image segmentation environment is now to define a
minimal data structure both to encode the models previously described and to
perform feature extraction and representation updating involved by segmenta-
tion algorithms.

Topological Data Structure. As stressed above the data structure used to rep-
resent a map is simply an array of integers indexed by darts. This array may
encode either σ or φ. We have chosen to encode the second one. Moreover, all
the maps involved in the representation of the topology of a segmented image
are disjointed in the sense that each map 〈ϕi, αi〉 is defined on a set of darts Di

disjointed from the other ones. We define the permutation ϕ by ϕ = ∪ϕi and the
permutation α by α = ∪αi. We have ϕ|Di

= ϕi and α|Di
= αi, and we may thus

simply denote by 〈ϕ, α〉 the set of maps {〈ϕi, αi〉}. In the same way σ denotes
the union of all the σi permutations. The permutation ϕ is encoded by an array
phi of integers, and for any dart d, if Di is the set of darts that contains d, we
have phi[d] = ϕi(d), and phi[−d] = σi(d).

In order both to address regions and to define the inclusion relation it is
convenient to define a region labeling. Therefore each dart is labelled with a
labeling function λ such that two darts have the same label by λ if and only if
they belongs to the same cycle of ϕ. Thus for each pair of darts (d, d′) we have:
λ(d) = λ(d′) ⇔ ϕ∗(d) = ϕ∗(d′).
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Fig. 5. A face labeling of the running example. The label in gray are labels of infinite
faces

Conversely, a function β associates each face label f with a dart of the corre-
sponding face cycle such that λ◦β(f) = f , and for each dart d, β ◦λ(d) ∈ ϕ∗(d).
This dart, called the canonical dart of f , is an arbitrary entry point in the dart
face cycle. The face of label f is thus the cycle ϕ∗(β(f)), and for each face label
f we have: ∀d ∈ ϕ∗(β(f)), λ(d) = f . Both the function λ and the function β
are encoded by an array of integers (respectively the array lambda and the array
beta). A labeling of the maps of the running example is given in Fig 5.

For each face f associated with a holed region, the relation children gives
the list of infinite faces associated with the holes. Conversely the relation parent
gives for each infinite face f the finite face f ′ such that f ∈ children(f ′).
The relations parent and children are the inclusion relations. Remark that
each region is associated which only one finite face and possibly several infinite
faces. Each region may thus be labeled in a unique way by the label of its
associated finite face. For instance the background region of the segmented image
of the running example is labeled by 1 which is also the label of its associated
finite face. The other faces associated with this region are the two infinite faces
labeled respectively by 8 and 10. The inclusion relations of the running example
are given in Fig 6. Two regions r and r′ may be neighbouring regions because
their associated faces are adjacent in one of the dual maps: ∃d ∈ ϕ∗(β(r)), and
∃d′ ∈ ϕ∗(β(r′)) such that α(d) = d′. But two regions may also be neighbouring
regions according to the parent (or children) relation. That leads us to consider
three different neighbouring modes on which we shall come back in section 6.

Fig. 6. The inclusion relation of the running example



Representing and Segmenting 2D Images by Means of Planar Maps 103

Geometrical Data Structure. We have now to define a data structure to represent
the geometrical embedding of maps, i.e. the geometry of interpixel boundaries.
It is possible to associate each segment with a local embedding. This embedding
can be defined independently for each segment, either explicitly by a sequence
of elementary steps or implicitly in a procedural way. Another solution con-
sists in defining a global embedding of the whole boundaries by encoding the
whole part of the boundary plane corresponding to the image domain. The main
advantage of the first solution is to provide simplest updating, especially for
segment removing. However the local encoding is ill-adapted to the splitting of
a region and to geometrical editing of regions. The solution retained here is thus
to encode explicitly the boundary plane by using a global data structure called
boundary image.

The boundary plane and the image plane are isomorphic. Thus an image and
its boundary image have about the same number of elements (in fact when an
image is of size N × M , its boundary image is of size (N + 1) × (M + 1) in
order to encode the image outer boundary). The boundary image encodes both
boundary points and link. A boundary point may have from two to four links.
An element of the boundary image without links cannot be a boundary point
and conversely an element of the boundary image with links is a boundary point.
Thus it is only necessary to explicitly encode links. Moreover the linking relation
is a symmetrical relation. Thus it is only necessary to encode links along two
of the four possible directions. For instance if we chose to encode upward and
rightward links it is possible to know if a boundary point p′ is linked downward
to a boundary point p by checking if its downward neighbour p is linked upward
to it. Since there is no way to recognize an arbitrary node it is also necessary
to mark nodes in the boundary image. Thus only three bits are needed to store
each entry of the boundary image.

To sum up, if the domain of an image is the set of points {(i, j) ∈ Z
2, 0 ≤

i < H, 0 ≤ j < W} the associated boundary domain is the set {(i − 1
2 , j −

1
2 ), (i, j) ∈ Z

2, 0 ≤ i ≤ H, 0 ≤ j ≤ W}. The boundary domain is encoded
by an array B called boundary image where the entry B[i][j] encodes three
boolean informations: whether the boundary point p of coordinates (i− 1

2 , j− 1
2 )

is a node, whether p is linked upward to either another boundary point or to a
node, and whether p is linked rightward to either another boundary point or to
a node. One can retrieve the geometry of a segment by following links from one
of its geometrical darts to the other one.

Correspondence Between Topology and Geometry. The correspondence between
topological and geometrical data structures is encoded by a associating combi-
natorial and geometrical darts. A geometrical dart is encoded by a point (which
is a pair of coordinates) and a direction (upward, leftward, downward or right-
ward). The relation between geometrical and topological darts is stored in an
array of geometrical darts indexed by topological darts. A hash table with pairs
of node coordinates as keys is used to avoid to traverse this array when looking
for a geometrical dart and get an efficient access to the topological representation
from the geometrical one.
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5 Overview of Algorithms

We have described in the previous section the whole data structure used to
implement a topological and geometrical representation of a segmented image.
Let us now give a short overview of related algorithms.

It is possible to find the region that contains a point by scanning the boundary
image from this point until reaching a segment. If the boundary image is scanned
horizontally (for instance rightward) it is enough to look for the first encountered
vertical link. Once the segment is reached the traversal continue by following
this segment until reaching a geometrical dart. The associated topological dart
d identify a face which is an infinite face if the scanning has reached the outer
boundary of a connected component and a finite face in the other case. The
region is then given by the label λ(d) in the case of a finite face and by the label
parent(λ(d)) in the case of an infinite face.

The boundary of a region f is obtained by traversing the cycle φ∗(β(f)) and
the cycles φ∗(β(f ′

i)) of the faces f ′
i of children(f). The geometry of this bound-

ary is obtained by traversing the segments corresponding to the geometrical
darts associated with the topological darts of φ∗(β(f)) ∪⋃i {φ∗(β(f ′

i))}.
According to the orientation of the plane the finite faces are traversed clock-

wise and the infinite ones counterclockwise. The domain of a region can thus be
reconstructed by building the list of all image points that are on the left of an
upward link or on the right of a downward link (see Fig. 7) and by sorting this
list relatively to lines and then to columns. The resulting list is exactly the list
of horizontal lines covering the region domain.

Fig. 7. Reconstruction of the domain of a region. The dark disks represent boundary
points and the white squares image points

The construction of the representation of a segmented region r can be done
with a complexity K × |r| where |r| is the number of points of the region, and
where K is a constant equal to 7 in the worst case. The topological updates
involved by split and merge can be expressed by mean of elementary operations
on the permutations and on the inclusion relations. The cost of geometrical
updating involved by splitting and merging is O(

∑
s∈S |s|) where S is the set of

inserted or removed segments. All these algorithms have been described in detail
in previous works [19, 36, 23, 24, 20, 26].

6 Designing a Toger API

In order to validate the interest of the model of planar maps with discrete em-
bedding in the contex of image segmentation, we describe in this section how to
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interact with such an environment, that we call toger kernel in the following of
this paper. We first give a short description of the types of objects manipulated
by such an API and then of the main functions of the interface.

Types. It is convenient to provide both a high level and a low level of interaction.
At the high level (or region level) the objects returned by the functions of the API
are regions or lists of regions, paths or lists of paths which encode the geometry of
region boundaries, and domains which encode the geometry of regions. A region
is a label encoded by an integer. A path is a sequence of adjacent points that
can be encoded by an array or in a more suitable way by a generator, i.e. a set
of functions { first, last, next, previous, length }, that is a usual interface
to traverse the elements of a list. The domain of a region r is encoded by a
sequence of pairs of points. A point is simply a pair of integer coordinates. Each
pair defines a span of the region r which is an horizontal maximal line (P2i, P2i+1)
belonging to r. The point P2i (resp. P2i+1) is thus located on the right (resp. the
left) of a vertical interpixel boundary element of r. The list of pairs of points is
the list of all the spans of the domain of r. Finally we have seen that two adjacent
regions can be related according to three different neighbouring modes. The type
neighbouring mode is used to denote these modes. The high level of interaction
does not require any knowledge of the internal representation. Conversely the low
level (or map level) provides interactions directly with the topological maps. The
data types used at map level are the darts, the face labels and the geometrical
darts. As seen above, both darts and face labels are elementary types encoded
by integers. We have seen that a region label is the label of its finite face. Thus
region labels are a subset of face labels. The geometrical darts are pairs consisting
of a point and a direction. Finally, the type toger is used to refer to the whole
representation. All these types are summarized in Table 1.

Table 1. Types of the toger API

dart set of integers
face set of integers
region set of integers
neighbouring mode { DIRECT, INNER, OUTER, ANY }
point pair of coordinates
direction { UPRIGHT, LEFTWARD, DOWNWARD, RIGHTWARD }
geometrical dart point and direction
path generator of points
domain list of pairs of points
toger topological and geometrical representation

Side Effect Functions. Among the side effect functions (i.e. functions that modify
the representation they receive in parameter) we need a function that builds the
representation of a segmented region: split region : toger × region × (point ×
point → boolean) → list of regions. The sub-regions of the segmented region are
implicitly described by a partitioning function f : point×point→boolean which
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receives two neighbouring points in parameter and returns true if these points
belong to a same region and false if not. The function split region updates the
topological and the geometrical representation of a region (second parameter)
according to a representation (first parameter) and to a partitioning function
(third parameter); the result is the list of labels of the new sub-regions.

In order to remove a boundary shared by two adjacent regions we need a
function that merges these regions: merge regions : toger × region × region →
∅. This function modifies a representation (first parameter) by merging two
regions (second and third parameters). The label of the region resulting from
the merge is the same as the one of the first region. Note that the removed part
of boundary is not necessarily connected and that this operation may disconnect
to components in the boundary graph. This function is the only low level deleting
function that can be defined in such an API because other basic delete operations
(like segment removing for instance) does not guarantee that the consistency of
the representation is preserved. Higher level deleting functions can be considered
like for instance the removing of all the region being inside a closed contour.

It may also be convenient to modify the representation by inserting a new
contour. It can be done by a function like insert contour : toger × path →
list of regions. In order to preserve the consistency of the representation, an in-
serted contour must be either a closed contour or a contour joining two nodes [19].
Thus the contour to insert (second parameter) must be preprocessed by the
function insert contour before being inserted, in order to satisfy one of these
conditions. All these functions modify both the geometry and the topology of
the representation. It is also possible to consider functions that modify only the
geometry, which can be for instance useful to locally smooth a boundary.

Point Inclusion and Region Localisation. We also need function to search for a
region. We have shortly described how to retrieve the region containing a given
point. This functionality can be provided by a function like find region : toger ×
point → region which returns the label of the region containing a point (second
parameter) according to a representation parameter). It is also possible to define
a function belongs to : toger × point × region → boolean that checks if a point
parameter) belongs to a region (third parameter) according to the representation
(first parameter),

Geometrical Features. The main geometrical features are the domain of a region
which can be obtained by a function like region domain : toger × region →
domain, and the geometry of its boundary which can be obtained by a func-
tion like region boundary : toger × region → list of closed path. Since a boundary
may consist of several closed path, it its convenient to get the outer bound-
ary as the first element of the returned list. It may also be convenient to get
only the outer boundary: region outer boundary : toger × region → closed path
and the part of boundary shared by two adjacent regions by using the function
regions common boundary : toger × region × region → list of paths. Geometrical
features of segment may also be useful. That leads us to consider functions like
segment : toger × dart → path, that returns a path which describes the geome-
try of the segment associated with a dart, and segment length : toger × dart →
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integer, that returns the segment length. Several different length estimators can
be used, such as the number of elementary steps or the length of the associated
Euclidean path [80].

Low Level Topological Features. Defining the interaction with the low topolog-
ical level is straightforward. Two functions lambda : toger × dart × face and
beta : toger × face → dart implement the functions λ and β associating darts
with labels. The functions alpha : toger × dart → dart, sigma : toger × dart →
dart, and phi : toger × dart → dart implements the permutations α, σ, and ϕ
used to traverse the combinatorial representation of maps. Finally the connected
components can be traversed with function parent : toger × face → face that re-
turns for a face f the face parent(f) if f is infinite or a void value if f is finite,
and with the both functions first child : toger × face → face and next child : toger
× face → face that implement the relation children.

Topological Marking. It is sometimes necessary to traverse the graph of regions
with respect to some marking. By associating marks to dart it is possible to
maintain the consistency of the marking when doing a side effect operation.
When an edge (d1, d2) is split into two adjacent edges (d1, d2) and (d′

1, d
′
2),

the dart d′
i receives a copy of the marks of the dart di. By this way, when a

region is split into subregions, it is possible without overhead to preserve the
consistency of marks on faces and more generally on any contour. It is also
possible to preserve the consistency of contour marking through region merging.
When a region r′ is merged with a region r, and if the common boundary of r
and r′ is a unique edge e, the marking can be preserved by marking the face
associated with r before removing e. If there are several edges e1, ..., en, the
removing of these edges disconnects from one to n− 1 components of the map.
In this case it is also necessary to unmark some edges in these components. It
is possible to mark an oriented edge, an non-oriented edge (by marking a cycle
of α), a node (by marking a cycle of σ), or a face boundary (by marking a
cycle of ϕ). The number of marks depends on the space allocated for each mark.
By allocating one byte per dart we get height marks per dart which is enough
for most of traversal algorithms and which the memory cost is reasonable with
modern computers. The type set of flags is a boolean combination of flags used
to manipulate the marks.

The interface of marking operations can be defined like the one of geomet-
rical feature functions. The functions mark region boundary : toger × region ×
set of flags → ∅ and unmark region boundary : toger × region × set of flags → ∅

respectively marks and unmarks the boundary of a region. Similarly, the func-
tions mark outer boundary : toger × region × set of flags → ∅ and unmark outer
boundary : toger × region × set of flags → ∅ respectively marks and unmarks
only the outer boundary of a region, and mark common boundary : toger × region
× region × set of flags → ∅ and unmark common boundary : toger × region ×
region × set of flags → ∅ the part of boundary shared by two regions. Finally we
need functions like mark all darts : toger × set of flags → ∅ and unmark all darts :
toger × set of flags → ∅ to set and clear marks on all the darts, and a function
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dart is marked : toger × dart × set of flags → boolean to check if a dart is marked.
Each time, a parameter of type set of flags is used to specify which is the mark
(or are the marks) to modify.

High Level Topological Functions. The neighbourhood of a region may be con-
sidered according to the three neighbouring modes. Both of the neighbouring
modes, the inner and the outer ones, are oriented relations. The third one is a
symmetric relation. A region r′ is a direct neighbour of a region r if the intersec-
tion of their outer boundaries is not empty. A region r′ is an inner neighbour of a
region r if the outer boundary of r′ intersects the internal boundary of r. In that
case r is an outer neighbour of r′. In other terms a region r′ is a direct neigh-
bour of a region r if ∃d ∈ ϕ∗(β(r)), and ∃d′ ∈ ϕ∗(β(r′)) such that α(d) = d′. A
region r′ is an inner neighbour of a region r (or r is an outer neighbour of r′) if
∃d ∈ ϕ∗(β(r′)) such that parent(λ(α(d))) = r. The neighbouring modes of the
regions of the running example are given in Fig. 8.

Fig. 8. Example of region neighbouring relations. The letters D, I and O denote re-
spectively the direct, inner and outer neighbouring. For instance the second line of
the array means that region r1 has one outer neighbour (the region r0), two direct
neighbours (the regions r2 and r3), and two inner neighbours (the regions r4 and r5)

The neighbourhood of a region may also be considered according to the topo-
logical marking. The neighbouring relation is thus restricted such that two re-
gions are not considered as neighbouring regions if their common boundary is
marked, according to a given set of marks. That leads us to define the interface
of the function region neighbourhood that gives the neighbourhood of regions as
a function of signature: toger × region × neighbouring mode × set of flags →
list of regions. It is also useful to have a function that gives any neighbouring re-
gion of a given one, for instance when looking for a neighbouring region to merge
with. So the function any region neighbour : toger × region × neighbouring mode
× set of flags → region returns a neighbouring region of a region according to
a neighbouring mode and a set of marks. The function are neighbours : toger ×
region × region × neighbouring mode → boolean checks if two regions are neigh-
bouring regions. Finally more general functions may be easily defined, such as
a the function inner regions : toger × region → list of regions which gives the list
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of regions located inside the outer boundary of a given region, or the function
all regions : toger → list of regions which gives the list of all the currently defined
regions.

Updating the Region Attributes. When implementing a segmentation method it
is generally necessary to attach attributes to regions. These attributes have to
been initialized and/or updated when regions are split or merged. It may raise a
problem of software engineering when the split or the merge is activated by a pro-
gram module which is not the one which has in charge the update of attributes.
In that case the activation of attribute update should be done automatically
by the kernel. A classic solution to this problem consists in attaching process-
ings to each side effect function. For instance, we can attach to the region split
action a function f which the signature is region × region × parameter → ∅,
where parameter is a type of generic parameter (like Object in Java or void*
in C and C++). Each time the region split function is executed, the function f is
automatically called by the kernel with the regions to be merged as parameters.
It may be also possible to attach a list of functions, or functions being called
either before or after the side effect. This mechanism is implemented for each
side effect function.

For instance let us suppose we want to attach descriptive statistical moments
to each region. These moments are be used to compute features like mean or
variance. Since these moments are additive, when two regions are merged, the
moments can be updated by simply adding themselves the moments of the same
order of each region and storing the result in the remaining region [23]. This can
easily be done by the way of the mechanism described above.

7 A Full Example of Constrained Segmentation

In this section we describe a full example of segmentation application using the
functionalities of the toger kernel. This application was developed in the context
of a medical imaging project of examination of temporal sequences of cardiac
MRI. Each sequence corresponds to a set of grey level slices acquired in a given
plane and varying with time over the cardiac cycle. The goal of the project was
to design and implement an algorithm of segmentation of the left ventricle along
the whole cycle.

Characteristics of the Problem. Each slice must be split into three regions which
are the ventricle cavity (denoted by Rc), the muscle (or myocardial wall) de-
noted by Rm, and the “exterior” denoted by Re. The regions boundaries of the
segmented image consist of two closed contours, the contour shared by Rc and
Rm, called endocardial contour, and the contour shared by Rm and Re, called
epicardial contour (see Fig. 9-a).

The ventricle cavity Rc is a heterogeneous region in which the turbulence of
the blood flow induces a large intensity distribution. The region Rm of the muscle
is made of muscular fibers and is homogeneous. The exterior Re is composed of
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Fig. 9. Endocardial and epicardial contours computed on the (i−1)th slice (a), insertion
of the contours of the (i − 1)th slice in the (i)th slice (b), and computed contours (c)
of the (i)th slice

the right ventricle, lungs and air so it is a heterogeneous region. In slices, the
blood flow appears bright and the muscle has mid-gray intensities. The first
image of the sequence (telediastolic phase) has be chosen because of a good
contrast between the cavity and the muscle. Along the cardiac cycle, the cavity
undergoes a phase of contraction followed by a phase of dilation. During the
contraction, the quality of contrast between the cavity and the muscle decreases
due to signal loss from turbulent blood flow. After telesystole, the extension of
the cavity causes contrast loss and noise. The last slice of the sequence is similar
to the first.

This problem is related to the quantitative analysis of the cardiovascular
system. Several approaches have been used to solve it, based on active contour [3,
31], graph searching [41], deformable templates [59], fuzzy logic [45], and region
growing [75]. The methods based on active contours models provide interesting
results but these methods are quite sensitive to the initialization process [73] and
the turbulence of the blood pool creates two very contrasted zones in the cavity
and the active contours converge to this artificial separation. To deal with the
problems raised by the turbulence of the blood flows, the artifacts and the noise
inherent to cardiac examinations, it turns out to be necessary to take in account
the cardiac properties. In this context, a constrained split and merge method
based on the toger kernel has been developed. The constraints were defined in
order to take in account the topological and geometrical characteristics of the
left ventricle over time. This method is totally dedicated to the segmentation of
the left ventricle [28, 29].

Principle of the Method. The endocardial and epicardial contours in the first
image of the sequence are adjusted manually by editing the result of an automatic
split and merge segmentation. Both contours are then propagated from each slice
to the next one (see Fig. 9-b). Each time, the regions delimited by these contours
are modified by a constrained split and merge algorithm in order to compute the
new contours (see Fig. 9-c). This approach allowed us to design a method which
is robust despite noise, artifacts and time varying contrast.
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Let us denote by Ri
c, Ri

m and Ri
e the three regions of the ith slice, and let us

suppose that the regions Ri−1
c , Ri−1

m and Ri−1
e of the (i − 1)th slice are known.

First the segmentation of the ith slice is initialized with the three regions Ri−1
c ,

Ri−1
m and Ri−1

e (see Fig. 10-a). Then the three regions are split independently
into homogeneous sub-regions (see Fig. 10-b). Each region split is based on a
multi-thresholding computed from the region histogram. A first classification of
the obtained sub-regions is achieved which gives a set of stable sub-regions which
are set of pixels that remain in the same cavity from the (i − 1)th slice to the
ith one. Each stable sub-region is thus removed by merging it with a suitable
neighbour (see Fig. 10-c).

The other sub-regions are the unstable sub-regions. Each unstable sub-region
is a region which is adjacent to the boundary of a cavity of the (i − 1)th slice
and which satisfies some topological and geometrical constraints. In the last step
of the method, such sub-regions are assigned to one of both their neighbouring
cavities. The cavities contour evolves each time the assignment of an unstable
sub-region changes. At the end of the stage all the unstable sub-regions are
merged with a suitable neighbour according to their assignment (see Fig. 10-d).

Fig. 10. The regions Ri−1
c , Ri−1

m and Ri−1
e are projected on the ith slice (a), each region

is split independently (b), the stable sub-regions are determined and removed (c), and
the unstable sub-regions are finally merged with one of their neighbouring cavities (d)
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Constraints. Two conditions have been retained to determine stable sub-regions:
(i) the initial topology of the first slice must be preserved, and (ii) the geomet-
rical deformations on the epicardial and the endocardial contours must be small
(in terms of surface and perimeter the cavity and the muscle are quite con-
stant from slice to slice). According to these conditions, four constraints have
been defined to select stable sub-regions. The first and second ones are topo-
logical constraints which goal is to satisfy condition (i). The first one identifies
sub-regions that does not intersect a boundary of at least one of the regions
Ri−1

c ,Ri−1
m and Ri−1

e and the second one the regions of the muscle that share
a frontier with both the cavity and the exterior, making a bridge between the
cavity and the exterior.

The last two constraints are geometrical constraints which goal is to satisfy
condition (ii). The third constraint identifies sub-regions which represent a sig-
nificant ratio of the region Ri−1

α in which they are included. If the assignment of
such a sub-region changes, then the region Ri

α undergoes an important surface
modification (in comparison with Ri−1

α ). Considering that these sub-regions are
stable prevents the surface of the regions Rc, Rm and Re from significantly in-
creasing or decreasing from one slice to the next one. The endocardial contour
undergoes more deformations than the epicardial one. Thus the ratio associated
with the surface of the sub-regions adjacent to the endocardial contour is greater
than the ratio associated with the surface of the sub-region adjacent to the epi-
cardial one. The fourth constraint is dedicated to the perimeter variation. A
significant increase in perimeter without an important change of surface can be
interpreted as the presence of an asperity in the endocardial or the epicardial
contours. In order to avoid these defects of contours, a sub-region the reassign-
ment of which would induce a significant change of the length of the endocardial
or epicardial contour is selected as stable.

These constraints can be summarized as follows:

1. Let r be a sub-region previously assigned to Ri−1
α . If ∂r ∩ ∂Ri−1

α = ∅ then
r is stable, and is assigned to Ri

α.
2. Let r be a sub-region previously assigned to Ri−1

m . If ∂r ∩ ∂Ri−1
c �= ∅ and

∂r ∩ ∂Ri−1
e �= ∅ then r is stable and is assigned to Ri

m.
3. Let us consider a sub-region r that shares the endocardial contour or the

epicardial contour and is included in Ri−1
α (α ∈ {c,m, e}). If |r|

|Ri−1
m | ≥ εγ

1

then r is stable and is assigned to Ri
α (εγ

1 is a constant that depends on the
contour γ).

4. Let us consider a sub-region r previously assigned to Ri−1
α . If |∂r∩∂Ri−1

α |
|∂r| ≤ ε2

then r is stable and is assigned to Ri
α

Classification of Unstable Sub-regions. The unassigned sub-regions share the
contours of the region Ri−1

m and they have an “insignificant” area. They can
be assigned to anyone of their neighbouring sub-regions while respecting the
topological and geometrical constraints. For the sub-regions sharing the endo-
cardial contour this assignment is done according to an heuristic function F . In
this case, the sub-regions have to been assigned either to the cavity or to the
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muscle. The function F (r,R) measures the deformation induced by the merging
of the sub-region r with the region R, R being Ri

c or Ri
m. This function, which

is similar to a criterion by Beveridge et al [9] is defined as follows2:

F (r,Rl) = αFsim(r,Rl) + βFhom(r,Rl) + γFcom(r,Rl)

where μr denotes the mean of r and

Fsim(r,Rl) =
|μr − μl|

max(μr,μc,μm)

Fhom(r,Rl) =
QE(r ∪Rl)−max(QE(r),QE(Rl))

QE(r ∪Rl)

Fcom(r,Rl) = 1− |∂r ∩ ∂Rl|
|∂r|

and with l ∈ {c,m}, α ≥ 0, β ≥ 0, γ ≥ 0, and

QE(r) =
∑
p∈r

i2p − μr ∗
∑
p∈r

ip

The function Fsim measures of the similarity of two regions, the function Fhom

measures the perturbation of the grey-level distribution resulting from merging
two regions and the function Fcom measures the common perimeter of two re-
gions. Each of them varies from zero to one and for each one the merge is favored
when the function is close to zero. We consider that the geometrical function
and the combination of the colorimetric and the homogeneity functions have the
same contribution. Then, the weighting parameters are set to α = β = 0.25 and
γ = 0.5.

The sub-regions sharing the epicardial contour must be assigned either to Rm

or to Re. Since the exterior Re is very heterogeneous the assignment function
can only take into account the considered sub-region and the muscle region Rm.
The distribution of grey level of the muscle is assumed to respect a Gaussian
distribution. A sub-region is assigned to the muscle if its own grey level distri-
bution is similar to the distribution of grey level of the muscle. This condition
can be expressed as follows:

μ− μm

σm
≤ t ⇒ r ∈ Rm

Implementation. Let us now describe how to implement this method with the
API of the toger kernel. First, there is nothing to do to initialize the segmentation
of the ith slice with the segmentation of the (i−1)th one. We only keep the current
representation and switch to the new slice. Let t be this current representation.

2 The main difference between this function and the Beveridge et al. criterion is that
function F selects a region according to an evaluation whereas the Beveridge’s cri-
terion decides whether the merge between two regions is possible.
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Since the label of the infinite region is always -1 the region Re is the only element
of the list returned by the expression region neighbourhood(t, -1, INNER). Like-
wise the region Rm can be obtained by the expression region neighbourhood(t, Re,
INNER), and the region Rc by region neighbourhood(t, Rm, INNER).

The three regions may be now split into sub-regions. But we will need to be
able to determine if a new sub-region is or not adjacent to an old contour. Thus,
before splitting the regions, we mark each contour with a different flag. It can be
done by calling mark outer boundary(t, Rm, FLAG 1) and mark outer boundary(t,
Rc, FLAG 2).

If S denote the current slice and S(p) the gray level of the point p in this
current slice the histogram Hr of a region r can be computed in the following
way:

D = region domain(t, r)
set to 0 all the entries of Hr

for each pair (p2i, p2i+1) of D
for p varying from p2i to p2i+1 do

increment Hr[S(p)]

For each region R a multi-thresholding fonction TR is then computed from the
histogram HR. From this function we can easily define the function fR(p1, p2)
required by the function split region as a function which returns the result of the
comparison TR(S(p1)) = TR(S(p2)). Thus we can split each of the three regions
Re, Rm and Rc and get the related lists of sub-regions Le, Lm and Lc in the
following way:

Le = split region(t, Re, fe)

Lm = split region(t, Rm, fm)

Lc = split region(t, Rc, fc)

Remark that since the consistency of marks is preserved both the epicardial and
the endocardial of the previous segmentation remain available.

Let us now consider the classification of sub-regions into stable and unstable
sub-regions. To compute the first constraint we have to check if ∂r ∩ ∂Ri−1

α is
empty. It is equivalent to check if no edge of the boundary of the face associated
with r is marked, which can easily be done in the following way:

d0 = beta(t, r)
d = d0
repeat

if (dart is marked(t, d, ANY) or dart is marked(t, -d, ANY))

return false

d = phi(t, d)
until d = d0
return true

The flag ANY is the union of all possible flags.
The second constraint concerns the sub-regions previously assigned to Ri−1

m ,
which is the list Lm. For each sub-region of Lm we have to check if ∂r∩∂Ri−1

c �= ∅

and ∂r ∩ ∂Ri−1
e �= ∅. It is equivalent to check if the boundary of r is marked
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at least once for the epicardial contour (FLAG 1) and once for the endocardial
contour (FLAG 2). It can be done by modifying the previous algorithm in a
straightforward way.

To check the third constraint we have to compute the size of a region r. It can
be done from the domain of the region returned by the function region domain.
If the set of spans of r is {(p0, p1), ..., (p2k, p2k+1)} then the size of r is given by
Σk

i=0(P2k+1−P2k +1). The size |Ri−1
m | of the region of the muscle of the previous

segmentation can be computed before the splitting step. The test |r|
|Ri−1

m | ≥ εγ
1

is computed for each remaining sub-region of Lc and of Lc and Lm. The con-
stant ε1 associated with the endocardial contour is used for all the sub-regions
of Lc. For the sub-regions of Lm either the constant associated with the endo-
cardial contour or with the epicardial contour is retained according to the mark
(FLAG 1 or FLAG 2) set on at least one edge of the boundary of r. Note that the
unmarked sub-regions have been removed by the first constraint and that the
sub-regions of Rm marked with two different flags have been removed by the
second constraint.

To compute the last constraint |∂r∩∂Ri−1
α |

|∂r| ≤ ε2 it is necessary to compute for
each sub-region both the length of its boundary and the length the part of its
boundary which intersects a contour, i.e. which is marked. Since unconnected
sub-regions (in other terms hole) have been removed by the first constraint each
remaining sub-region is simply connected. It is thus enough to consider only the
outer boundary which is given by the cycle of β(r) in the permutation φ. Let us
denote by lr and li the length of respectively the outer boundary of r and the
common boundary of r and the epicardial or endocardial contour. We can get
these features in the following way:

d0 = beta(r)
d = d0
lr = 0

li = 0

repeat

l = segment length(t, d)
lr += l
if (is marked(t, d))

li += l
d = phi(d)

until (d == d0)

We have thus |∂r∩∂Ri−1
α |

|∂r| = li
lr .

At this stage all the stable sub-regions have been identified. Before to pro-
cess the unstable sub-regions we have to remove stable sub-regions by iterating
merging. It can be done in a straightforward way by traversing the list of sta-
ble sub-regions and by merging each stable sub-region r with any neighbouring
sub-region r′ being in the same region, i.e. such that the common boundary of
r and r′ is unmarked:
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for each stable sub-region r do

r′ = region any neighbour(t, r, ANY, NOMARK)

region merge(t, r, r′)

We can now consider the processing of unstable sub-regions and thus the
computation of the function F (r,Rl). The region Rl for l ∈ {e,m, c} is the
last sub-region merged when processing the stable sub-regions of the list Ll.
As described above it is straightforward to initialize the descriptive moments
Mi(r) =

∑
p∈r(S(p))i when regions are split and to update them when sub-

regions are merged. The three first descriptive moments M0, M1 and M2 are
attached to each region of the representation which allows to get μr = M1(r)

M0(r)
,

and QE(r) = M2(r) − M2
1 (r)

M0(r)
. To have F (r,Rl) we also need to know |∂r| and

|∂r∩∂Rl| the computation of which has been described above. Each sub-region of
Lc (resp. Le) may be merged either with Rc or Rm (resp. Rm or Re) according to
F . Each sub-region of Rm falls the first case if it is adjacent to the endocardial
contour and in the second case otherwise, which can be determined from the
mark. When the three lists have been processed the three remaining regions are
the new regions Rc, Rm and Re and the marks are removed by using the function
unmark all darts.

Results. This algorithm has been tested on 33 temporal sequences of short axes
MR images (see Fig. 11 for an example of result). Each of these sequences has
been acquired from a different patient. The validation has been done for medium-
plane sequences. The results have been qualified by hospital practitioners: 12

Fig. 11. An example of automatic segmentation of the left ventricle along twelve slices
of a temporal MRI sequence
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excellent, 8 good, 8 medium, 4 insufficient and 1 mediocre segmentations of an
entire sequence. The study of inter- and intra-observer reproducibility made for
these sequences, shows that our algorithm corresponds to the expectations of
the hospital practitioners; that is a decrease of the inter and intra variability.

8 Conclusion and Perspectives

In this paper we have given an overview of the use of planar maps with discrete
embedding in the context of image segmentation. We have described how to rep-
resent the topology of a segmented image with a set of planar maps and how to
associate with planar maps the boundaries of a discrete segmented image. We
have show how this model can be used to implement most of operations involved
in the design of segmentation algorithms, such as reconstruction of the geometry
of the boundary and of the domain of a region, point inclusion, region locali-
sation, obtaining of geometric and topological features, and updating involved
by region splitting and merging. We have described the data structures and the
algorithms that permits to use this model in the context of image segmentation.

This model has been used with success to implement various segmentation
applications. We have thus decided to capitalize on this experiment to develop a
portable general image representation library implementing the model and the
algorithms summarized in this paper. A first version of the API of this library
have been presented in section 6. Finally we have illustrated this approach by
describing a full example of constrained segmentation method designed with this
API. The General Image Representation Library will be available under LGPL
in the course of year 2005.

In parallel we are working on the extension on this model to represent and
segment three-dimensional discrete images. Two different models were proposed,
one of them by Braquelaire, Desbarats, Domenger and Wütrich [16, 34, 13, 35]
and the other one by Bertrand, Damiand and Fiorio [7, 33, 8]. We are currently
collaborating to mix both models and design an implementation of a 3D general
image representation library [12].
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1995.

40. C. Fiorio. A topologically consistent representaion for image analysis: the topolog-
ical graph of frontiers. In S. Miguet, A. Montavert, and S. Ubéda, editors, Lectures
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Abstract. Irregular pyramids are made of a stack of successively re-
duced graphs embedded in the plane. Such pyramids are often used
within the segmentation and the connected component analysis frame-
works to detect meaningful objects together with their spatial and topo-
logical relationships. The graphs reduced in the pyramid may be region
adjacency graphs, dual graphs or combinatorial maps. Using any of these
graphs each vertex of a reduced graph encodes a region of the image. Us-
ing simple graphs one edge between two vertices encodes the existence of
a common boundary between two regions. Using dual graphs and combi-
natorial maps, each connected boundary segment between two regions is
associated to one edge. Moreover, special edges called loops may be used
to differentiate a special type of adjacency where one region surrounds
the other. We show in this article that the loop information does not al-
low to distinguish inside and outside of the loop by local computations.
We provide a method based on the combinatorial pyramid framework
which uses the orientation explicitly encoded by combinatorial maps to
determine inside and outside with local calculus.

1 Introduction

An irregular pyramid [7] is defined as a stack of successively reduced graphs.
The hierarchical representation provided by such pyramids allows to reduce the
computational cost of many graph algorithms using reduced versions of the initial
graph. This representation also provides a nice framework for graph algorithms
based on a divide and conquer strategy. Finally, the irregular pyramids provide
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a global representation which may be used to add further constraints on many
graph algorithms.

Irregular pyramids have been widely used to encode partitions within the
segmentation and the connected component analysis frameworks [7, 8]. The dual
graph Pyramids introduced by Kropatsch [6] are defined as a stack of dual graphs
successively reduced. Within such pyramids the mapping of a non surviving
vertex to a surviving one is performed by the contraction of their common edge.
The contraction of a graph reduces the number of vertices while maintaining the
connections to other vertices. As a consequence self loops or multiple edges may
occur, some of them being redundant in that they do not surround any part of
the graph. Such edges surround thus “empty inside” and are called empty self
loops. These redundant edges may be locally characterized in the dual of the
graph and suppressed by a removal step.

One particular type of adjacency between two regions is called the includes
relationship. The includes relationship relates two regions, one is placed ’outside’,
the other is ’inside’ and is surrounded by the outside region in the embedding
(see e.g. the arrows in Fig. 3). A self-loop incident to the vertex encoding the
outside surrounds the inside (Fig. 2(a)). The edge corresponding to the self-loop
in the dual graph is a bridge connecting inside and outside region. Without
orientation the exchange of inside and outside does not change the topology
of the graph, the two graphs are indistinguishable. Such loops which are not
present at the base level are created by the successive contraction and removal
operations applied to build the pyramid.

A Combinatorial Pyramid is defined as a stack of successively reduced com-
binatorial maps. The reduction scheme used within the combinatorial pyramid
framework is similar to the one used within dual graph pyramid. However, the
formalisms of the combinatorial and dual graph pyramids are quite different.
One of the main specific property of combinatorial maps is the explicit encoding
of the orientation of the plane. The method presented in this paper uses the
explicit encoding of the orientation by combinatorial maps to differentiate usual
adjacency relationships from the includes ones.

The rest of this paper is structured as follows: We first present in section 2
the main properties of the combinatorial maps. Then we present in section 3
the combinatorial pyramid framework together with the main concepts used to
compute inside relationships. Finally, we present the problem of the determi-
nation of the includes relationships in section 4 together with one method to
determines the set of regions inside a given one. We conclude this last section
with an experiment illustrating the usefulness of includes relationship.

2 Orientation in Combinatorial Maps

A combinatorial map G = (D, σ, α) encodes a partition on an orientable surface
without boundary. Combinatorial maps are used within the image processing and
analysis framework to encode image’s partitions. Using 2D images, combinatorial
maps may be understood as a particular encoding of a planar graph where



124 L. Brun and W. Kropatsch

each edge is split into two half-edges called darts. Since each edge connects
two vertices, each dart belongs to only one vertex. A 2D combinatorial map is
formally defined by the triplet G = (D, σ, α) where D represents the set of darts
and σ is a permutation on D whose cycles correspond to the sequence of darts
encountered when turning counter-clockwise around each vertex. Finally α is an
involution on D which maps each of the two darts of one edge to the other one.
Given a combinatorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α)
with ϕ = σ◦α. The cycles of permutation ϕ encode the faces of the combinatorial
map and may be interpreted as the sequence of darts encountered when turning
clockwise around a face. In what follows, the cycles of α, σ and ϕ containing a
dart d will be respectively denoted by α∗(d), σ∗(d) and ϕ∗(d). An introduction
to combinatorial maps and combinatorial pyramids may be found in [4, 2].

Fig. 1(a) describes a dual combinatorial map G = ({ }, { − }) encoding
a 3 × 3 4-connected planar sampling grid. Using this encoding the ϕ, σ and α
cycles of each dart may be respectively understood as elements of dimensions
0, 1 and 2 and formally associated to a 2D cellular complex [4]. More precisely,
each α cycle may be associated to a crack between two pixels. Each of the two
darts of an α cycle corresponds to an orientation along the crack. For example,
the cycle α∗(1) = (1,−1) is associated to the crack encoding the right border
of the top left pixel of the 3 × 3 grid (Fig. 1(a)). The darts 1 and −1 define
respectively a bottom to top and top to bottom orientation along the crack.

These results may be extended to any reduced combinatorial map encoding
an image partition. In this case, each dart of the map should be interpreted
as a sequence of oriented cracks encoding an oriented and connected boundary
segment between two regions. Such a sequence is simply called a segment. The
relationships between segments and cracks are as follows: Each oriented crack
belongs to at most one segment. Moreover, if one oriented crack belongs to
a segment associated to a dart d, the same crack with an opposite orientation
belongs to the segment associated to α(d). For example, the dart 16 in Fig. 1 (c) is

Fig. 1. A dual of a combinatorial map (a) encoding a 3 × 3 grid with the contracted
combinatorial map (b) obtained by the contraction of K1 = α∗(1, 2, 10, 11, 12, 6). The
reduced combinatorial map (c) is obtained by the removal of the empty self loops
defined by K2 = α∗(4) and the double edges defined by K3 = α∗(13, 14, 15, 19, 18, 22)∪
{24, −16, 17, −20, 21, −23, 3, −5}
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associated to the sequence of oriented cracks encoded by the darts 16.15.14.13.24
(Fig. 1(b)) while the dart −24 is associated to −24.− 13.− 14.− 15.− 16.

3 Connected Boundary Segments and Orientation
Within the Combinatorial Pyramid Framework

As in the dual graph pyramid scheme [6] (Section 1) a combinatorial pyramid
is defined by an initial combinatorial map successively reduced by a sequence
of contraction or removal operations. Contraction operations are encoded by
contraction kernels. These kernels defined as a forest of the current combina-
torial map may create redundant edges such as empty-self loops and double
edges(Fig. 1(b)). Empty self loops (edge α∗(4) in Fig. 1(b)) may be interpreted
as region’s inner boundaries and are removed by an empty self loops removal
kernel after the contraction step. The remaining redundant edges called double
edges, belong to degree 2 vertices in G (e.g. ϕ∗(13), ϕ∗(14), ϕ∗(15)) in Fig. 1(b))
and are removed using a double edge removal kernel which contains all darts
incident to a degree 2 dual vertex. Note that, any combinatorial map deduced
from the application of a contraction kernel followed by the two removal kernels
cannot contain empty self loops. No dart d of such a combinatorial map may
thus satisfy the relationship : σ(d) = α(d). Further details about the construction
scheme of a pyramid may be found in [2, 3].

As mentioned in Section 2, each dart of a reduced combinatorial map may be
associated to a sequence of oriented cracks called a segment. Since each oriented
crack is encoded by one dart in the base level combinatorial map G0(Section 2),
a segment may be equivalently defined as a sequence of darts belonging to G0.
Let us consider a combinatorial map Gi = (Di, σi, αi) defined at level i such
that Gi does not contain any empty self loop. Given a dart d in Di the sequence
d1 . . . dn encoding the segment associated to d is defined by [2]:

d1 = d , dj+1 = ϕm
0 (α0(dj)) and α0(dp) = αi(d). (1)

where G0 = (D0, ϕ0, α0) is the dual of the initial combinatorial map and m is the
minimal integer such that ϕq

0(α0(dj)) survives at level i or belongs to a double
edge kernel. This last condition is tested in constant time using the implicit
encoding of combinatorial pyramids [2].

Note that, if G0 encodes the 4-connected planar sampling grid, each ϕ0 cycle
is composed of at most 4 darts (Fig. 1(b)). Therefore, the computation of dj+1
from dj requires at most 4 iterations and the determination of the whole sequence
of cracks composing a boundary between two regions is performed in a time
proportional to the length of this boundary.

Each oriented crack associated to an initial dart dj may be encoded by the
position of its starting point and one move. Using a 4-connected sampling grid
these moves belong to {right, up, left, down}. Given a dart d of Gi, let us de-
note respectively by Fm(d) and Lm(d) the moves of the first and last oriented
cracks of the segment associated to d. If d1 . . . dp denotes the sequence of initial
darts associated to d, we have d1 = d and dp = α0(αi(d)) (equation 1). The
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two darts d1 and dp may thus be retrieved in constant time from d. Moreover,
Fm(d) and Lm(d) are equal to the move of the oriented cracks respectively as-
sociated to d1 and dp. This correspondence between the oriented cracks and the
initial darts may be defined using any implicit numbering of the initial darts
(see e.g. Fig. 1(a)). The values of Fm(d) and Lm(d) may thus be retrieved with-
out additional memory requirement and in constant time using an appropriate
numbering of the initial darts. For example, the first and last moves of the dart
16 in Fig. 1(c) are associated to the moves of the darts 16 and α0(−24) = 24 in
G0 (Fig. 1(a)) and are respectively equal to up and down.

Given a dart d in Gi, and the sequence of darts d1 . . . dp in G0 encoding its
segment, the properties of the segments (Section 2) together with the properties
of the combinatorial pyramids [2] induce the two following properties:

∀j ∈ {1, . . . , p− 1} move(dj)−1 �= move(dj+1) (2)
Lm(d) �= Fm(σi(d))−1 (3)

where move(dj) denotes the move of the oriented crack associated to dj and
move(dj)−1 is the opposite of the move of dj (e.g. right−1 = left).

Equation 2 states that two successive moves within a segment cannot be
opposite. This property is induced by the fact that one segment cannot contain
twice a same crack with two orientations. Equation 3 states that the first move
of the σi successor of a dart d cannot be the opposite of the last move of d.
Otherwise, the dart d would be an empty self loop of Gi which is refused by
hypothesis.

Given a dart d1 in Gi, let us consider a sub-sequence d1. . . . .dq of σ∗
i (d1) such

that dq �= αi(d1). Let us also consider the sequence S of oriented cracks defined
as the concatenation of the segments associated to d1 . . . .dq. The orientation of
the sequence d1. . . . .dq is then defined as the overall number of clockwise turns
between the successive cracks along S. In order to measure such an orientation
we define the angle between two successive oriented cracks as :

– +1 if the two oriented cracks define a clockwise 90◦ turns,
– -1 if the two oriented crack define a counter-clockwise 90◦ turns,
– 0 if the two oriented crack correspond to a same move,
– undefined if the two oriented cracks correspond to opposite moves.

Such angles may be easily encoded using a basic 4 × 4 array indexed by the
Freeman’s codes of the moves: right,up, left and down are numbered from 0 to
3. The angle between two moves m1 and m2 is denoted by (m1, m2) .̂ We have
for example, (right, right)̂ = 0, (right, up)̂ = −1,(right, down)̂ = +1 and
(right, left)̂= undefined.

Given the angle between two successive oriented cracks we define the orien-
tation of a dart as the sum of the angles between the oriented cracks along its
associated segment. Given a dart d in Gi the orientation of d is thus defined by:

or(d) =
n−1∑
j=1

(move(dj), move(dj+1))̂ (4)
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where d1 . . . dn is the the sequence of initial darts encoding the segment as-
sociated to d. Note that (move(dj), move(dj+1)̂ cannot be undefined for any
j ∈ {1, . . . , n− 1} (equation 2).

The orientation of a dart may be computed on demand using equation 4
or may be attached to each dart and updated during the construction of the
pyramid. Indeed, let us consider two successive double darts d1 and d2 at one
level of the pyramid. If d1 survives at the above level its orientation may be
updated by [1]:

or(d1) = or(d1) + or(d2) + (Lm(d1), Fm(d2))̂ (5)

Note that this last formula may be extended to the removal of a sequence of
successive double edge.

The dart’s orientation may thus be computed by fixing the orientation of all
initial darts to 0 and updating the dart’s orientation using equation 5 during
the removal of each double edge kernel.

Let us consider a sequence d1 . . . dq in Gi such that dj+1 = σi(dj) for all j in
{1, . . . , p− 1} and dq �= αi(d1). Its orientation is defined by:

or(d1 . . . dq) =

⎛⎝q−1∑
j=1

or(dj) + (Lm(dj), Fm(dj+1))̂
⎞⎠+ or(dq) (6)

The quantity (Lm(dq), Fm(d1))̂ has to be added to or(d1 . . . dq) if the sequence
defines a closed boundary. Note that (Lm(dj), Fm(dj+1))̂cannot be undefined
for any j ∈ {1, . . . , q − 1} (equation 3). Moreover, one can show that if the
sequence defines a closed boundary and if Lm(dq) = Fm(d1)−1, then we should
have αi(dq) = d1, which is refused by hypothesis.

Using the same notations and hypothesis than equation 6, one important
result shown by Braquelaire and Domenger [1] states that the orientation of a
sequence d1 . . . , dq defining a closed boundary is equal to 4 if it is traversed
clockwise and −4 otherwise. Moreover, this sequence corresponds to:

– a finite face of Gi and thus a region if its orientation is equal to −4,
– a set of faces of Gi connected by bridges and included in one face if the

orientation is equal to 4. Such a set of faces is called an infinite face [1].

By construction each combinatorial map Gi of a combinatorial pyramid is
connected and all faces of Gi but one define a finite face. The infinite face of
a combinatorial map encodes the background of the image (denoted by E in
Fig. 2). The above property is used in Section 4 to compute inside and outside
adjacency relationships with local calculus.

4 Computing Inside Relationships

As in the dual graph pyramid framework, the inclusion relationships are encoded
within the combinatorial pyramid framework by self-loops: One vertex v adjacent
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to a vertex w and surrounded by one loop of w encodes a region included in the
region associated to w.

This property is illustrated in Fig. 2 where the image is partitioned into 4
regions. The region encoded by the vertex A includes the two regions B and C
and is adjacent to the region D. The vertex E encodes the background of the
image. These inclusion relationships are encoded in the combinatorial map G by
the loop (1,−1) which surrounds vertex B and the two nested loops (1,−1) and
(3,−3) which surround vertex C. Note that each loop corresponds to a bridge
in G (Fig. 2(b)).

Let us denote the combinatorial map represented in Fig. 2 by G = (D, σ, α).
The σ cycle of vertex A is equal to σ∗(1) = (1, 2, 3, 4,−3, 5,−1, 6, 7, 8). If we
suppose that the loop (1,−1) does not surround the vertices B and C incident
to the edges α∗(2, 3, 4,−3, 5) but the vertices D and E incident to α∗(6, 7, 8) we
obtain the same σ orbit σ∗(1). This last remark shows that inside relationships
cannot be decided locally without additional information. Note that this problem
is not specific to the combinatorial pyramid framework. Indeed the same example
may be built within the dual graph pyramid framework leading to the same
drawback.

Let us consider a combinatorial map Gi = (D, σi, αi) defined at the level
i of a combinatorial pyramid and one loop α∗

i (d) of Gi such that σ∗
i (d) =

(d, d2, . . . , dk−1, αi(d), dk+1, . . . , dp). Let us additionally consider the two se-
quences of darts C1 = (d2 . . . , dk−1) and C2 = (dk+1, . . . , dp) such that σ∗

i (d) =
(d, C1, αi(d), C2). The loop α∗

i (d) surrounds either the vertices incident to α∗
i (C1)

or α∗
i (C2). In order to differentiate these two configurations we say that d is

the starting dart of the loop in the former case and the ending dart in the
later one. Note that since α∗

i (d) defines a bridge in Gi both C1 and C2 define
closed boundaries. Moreover, since Gi does not contain redundant edges, we
have d2 �= αi(dk−1) and dk+1 �= αi(dp). Using equation 6, we obtain after some
calculus:

or(σ∗
i (d)) = or(C1) + or(C2)− 4 ⇒ or(C1) = −or(C2) (7)
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9

9

(a) G (b) G

Fig. 2. One partition composed of 4 regions with two included ones
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1 list starting dart(combi map Gi, dart d1) {
2 list L=∅
3 stack P
4 for each dart dk in σ∗

i (d) = (d1, . . . , dp){
5 if(dk is a loop) {
6 if(P is empty or αi(dk) is not on the top of the stack P)
7 push dk and ork in P
8 else {// αi(dk) on top of the stack P
9 let C1 be the sequence of darts between αi(dk) and dk

10 computes or(C1) using equation 8
11 if(or(C1) == 4) L = L ∪ {αi(dk)} else L = L ∪ {dk}
12 }
13 }
14 return L
15 }

Algorithm 1: Determination of the starting darts of the loops

where or(σ∗
i (d)) denotes the orientation of the whole sequence of darts

(d, d2, . . . , dp). Since this sequence defines a counter clockwise traversal of the
face its orientation is equal to −4 (Section 3).

Equation 7 may be interpreted as follows: The loop α∗
i (d) corresponds to a

bridge in Gi the removal of which splits the combinatorial map into two con-
nected components. The component encoding the including face is traversed
counter-clockwise and have thus an orientation equals to −4. On the other hand
the remaining component corresponds to the included regions and has an op-
posed orientation equals to 4. Therefore, given the orientations of C1 and C2, d
is the starting dart of the loop if the orientation of C1 is equal to 4. Otherwise
αi(d) is the starting dart of the loop and d the ending one.

This last result is the basis of Algorithm 1 which traverses the σi cycle of a
given vertex σ∗

i (d1) = (d1, . . . , dp) and computes at each step the orientation of
the sequence d1 . . . , dk denoted by ork(equation 6).

Let us consider a dart dk in σ∗(d1) such that α∗
i (dk) corresponds to a loop

and αi(dk) = dj has been previously encountered (j < k). Then since the loops
are nested dj should be on the top of the stack. Using equation 6, if we denote
by C1 the sequence of darts between dj and dk, its orientation may be retrieved
from ork and orj by the following formula:

or(C1) = ork − orj − (Lm(dj), Fm(dj+1))̂+ (Lm(dk−1), Fm(dj+1))̂ (8)

The darts dj , dj+1 and dk−1 may be retrieved from the current dart dk by: dj =
αi(dk) ; dj+1 = σi(dj) and dk−1 = σ−1

i (dk). Given equation 8, the algorithm
determines from the sign of or(C1) the starting dart of the loop between dj and
dk (line 11). This starting dart is added to a list returned by the algorithm. Note
that equation 8 is evaluated in constant time since ork is the current orientation
and orj is retrieved from the stack.
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Fig. 3. Extraction of symbols within roadsigns using inside/outside information

Given the list of starting darts determined by Algorithm 1, the set of ver-
tices included in σ∗

i (d1) is retrieved by traversing, the sequence σ∗
i (d1) from

each starting dart to the corresponding ending one. By construction all darts
encountered between the starting and ending darts of the loop encode adjacency
relationships to included vertices. Note that in case of nested loops some loops
may be traversed several times. Given a starting dart d, this last drawback may
be avoided by replacing any encountered starting dart by its αi successor during
the traversal from d to αi(d).

Our algorithm, is thus local to each vertex and the method may be applied in
parallel to all the vertices of the combinatorial map Gi. Given a vertex σ∗

i (d1), the
determination of its starting darts requires to traverse once σ∗

i (d1). Moreover, the
determination of the inside relationships from the list of starting darts requires to
traverse each dart of σ∗(d1) at most once. The worse complexity of our algorithm
is thus equal to O 2|σ∗

i (d1)| .
Fig. 3 illustrates one application of the inside/outside information to image

analysis. The roadsign represented in Fig. 3(a) are composed of only two col-
ors with one symbol inside a uniform background, the background itself being
surrounded by one border with a same color than the symbol. In our example,
the two roadsigns have a uniform blue background which includes one symbol
representing a white arrow. The blue background is surrounded by a white bor-
der. In this application we wish to extract the sign of the roadsign using only
topological and color information (and thus independently of the shapes of the
symbol and the roadsign). Using only adjacency and color information, the sym-
bol cannot be distinguished from the border of the roadsign since the border
and the symbol have a same color and are both adjacent to the background of
the roadsign (Fig. 3(d)). However, using inside/outside information, the sym-
bol and the border may be distinguished since the background of the roadsign
is adjacent to the border but includes the symbol. Our algorithm first builds
a combinatorial pyramid using a hierarchical watershed algorithm [5]. Fig. 3(b)
represents the top level of the hierarchies obtained from the two roadsigns. Using
the top level combinatorial map of each pyramid our algorithm selects the k most
blueish regions of the partition (k is fixed to five in our experiment). This last

)(
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step defines a set of canditate regions for the background of the roadsign. This
background is then determined as the region whose included regions have the
closest mean color from the color’s symbol (equal to white in this experiment).
Note that this step removes from the k selected candidates any regions which
do not include another region. We thus explicit the a priori knowledge that the
background of the roadsign should includes at least one region. The symbol is
then determined as the set of regions included in the selected region (Fig. 3(c)).
The symbol of the roadsign may thus be over segmented or composed of several
disconnected regions. Finally, let us note that the includes information needs to
be computed only on the k selected candidates for the roadsign’s background.
Within this experiment a global algorithm computing the includes information
for all vertices would require useless calculus.

5 Conclusion

The method presented in this paper allows to get the set of regions inside in a
given one. This method uses the orientation of the plane explicitly encoded by
combinatorial maps and is particularly suited for algorithms using occasionally
the inside information. Its worse complexity is equal to twice the number of edges
incident to the vertex for which the inclusion relationships are computed. In our
future work we plan to design a more global algorithm getting the inclusion
information for all vertices.
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Abstract. We propose the GeoMap abstract data type as a unified
representation for image segmentation purposes. It manages both topol-
ogy (based on XPMaps) and pixel-based information, and its interface
is carefully designed to support a variety of automatic and interactive
segmentation methods. We have successfully used the abstract concept
of a GeoMap as a foundation for the implementation of well-known
segmentation methods.

1 Introduction

The goal of image segmentation is to identify regions that are conceptually co-
herent and serve as a basis for further analysis steps. Segmentation methods
rely on local information on both direct properties of pixels and regions and the
neighborhood. Today, computer vision researchers agree that correct handling of
topology is needed when dealing with regions and boundaries, in order to avoid
problems like the connectivity paradox.

Information on neighborhood-relations is conveniently stored in graph struc-
tures like the well-known region adjacency graphs (RAG [1]). These structures
differ in expressiveness; some have problems with representing certain config-
urations occurring in image analysis (separate contours / holes, see e.g. [2]).
Thus, a number of advanced formalisms for finite topology have been proposed
for solving these problems [3, 2, 4, 5]. Another problem related to these graph
structures is that usually, the geometry of the regions is stored separately (in
so-called label images, edgel lists, or the like), and an algorithm has to modify
both the graph and the external data when for example regions are merged. This
puts the burden of preventing inconsistencies between the graph representation
and the pixel geometry on the user (i.e. developer of the algorithm).

Furthermore, there are several possible definitions of regions and boundaries
in discrete images - like crack edges, 8-connected boundaries between 4-connected
regions or vice versa, or working with a hexagonal grid (some examples follow in
Sect. 2, see Fig. 1 on page 135) - but they cannot be used interchangeably, since
algorithms usually work directly on the pixel layer. We can generalize algorithms
by formulating them on a higher abstraction level, and managing all relations
between the topology and geometry on the pixel level in one abstract data type.
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The GeoMap we introduce here will i) allow to work on a natural abstraction
level with faces, edges, and vertices as basic entities (resulting in more concise,
readable and reusable code), while ii) offering access to both their neighborhoods
and their associated pixels at any time. This leads to considerable advantages:
Having a common, unified representation for different automatic and interactive
segmentation algorithms makes it possible to use them not only alternatively,
but also together on one image. Furthermore, it facilitates the separation of the
basic segmentation approach i) from the definition of topology on the pixel layer,
but also from e.g. ii) cost definitions driving an optimization process, and thus
allows to recombine parts from different publications.

2 The GeoMap Concept

As mentioned above, the GeoMap builds upon the XPMap formalism [5], and
extends it by integrating the required geometrical information. We will now
formally introduce the concept of a GeoMap, then carefully design an applica-
tion interface suitable to exploit the advantages of our unified representation in
Sect. 2.1, and finally propose a possible internal representation for our abstract
data type (ADT) in Sect. 2.2. First, we need to define combinatorial maps.

Definition 1. A combinatorial map is a triple (D, σ, α) where D is a set of
darts (half-edges), and σ, α are permutations defined on D such that all α orbits
have length 2 and the map is connected, i.e. there exists a σ-α-path between any
two darts:

∀d1, d2 ∈ D: ∃π ∈
⎧⎨⎩ ∏

0≤i≤k

τi

∣∣∣∣∣∣ τi ∈ {σ, α} , k ∈ N

⎫⎬⎭: π (d1) = d2

The orbits of σ, α, and the composed permutation ϕ = σ−1◦α are called vertices,
edges, and faces respectively.

A combinatorial map is planar, if and only if its number of vertices, edges,
and faces fulfills Euler’s equation (|α| denotes the number of orbits in α):

|σ|−|α|+|ϕ|=2 (1)

An obstacle when trying to use planar combinatorial maps for image segmen-
tation is that they cannot represent multiple boundary sets, which occur if we
have regions with holes.

A common solution is to introduce auxiliary bridges which connect the con-
tours (cf. [2]), but this complicates further handling, since i) algorithms working
with edges have to explicitly check for these, and ii) there is no naturally defined
place where these bridges should be attached to the contours. The latter becomes
even more bothersome when we add geometrical information to the combinato-
rial structure. Then the auxilliary bridges also need geometric representations,
which is unnecessary and may even be impossible if the geometry is defined
with finite resolution as in our pixel-based approaches below. Furthermore, such
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bridges are undesirable if they have to be distinguished from “real” bridges that
represent incomplete boundaries information.

We avoid auxilliary bridges by means of the XPMap formalism [5]:

Definition 2. We call a tuple (C, c0, exterior, contains) extended planar map
(XPMap) where C is a set of non-trivial planar combinatorial maps (the com-
ponents of the XPMap), c0 is a trivial map that represents the infinite face of
the XPMap, exterior is a relation that labels one ϕ-orbit of each component in C
as the exterior orbit, and contains is a relation that assigns each exterior orbit
to exactly one non-exterior ϕ-orbit or to the infinite face of c0.

Note that an XPMap naturally defines permutations σ, α, and ϕ, which are
simply the compositions of all permutations of the combinatorial maps in C.

XPMaps are a powerful representation for finite topology and suitable for
image segmentation; however, segmentation algorithms are normally not entirely
topology-based, but in general need to access the geometry and other (pixel-)
properties of the boundaries and regions, such as brightness and gradient. Due
to this important observation, we will now introduce the GeoMap.

Consider a complete partitioning of the plane into a set P of open regions that
we call basis cells (which normally correspond to pixels or Khalimsky cells [6]).
Furthermore, consider a relation dim: P → {0, 1, 2} that assigns a dimension to
each basis cell. We then group connected basis cells of the same dimension into
block cells according to the following rules (where Pd := {p ∈ P|dim (p) = d}):

V := CC

[⋃
P0

pc

]
, E := CC

[(⋃
P1

pc

)
\

⋃
V

]
, F := CC

[(⋃
P2

pc

)
\

(⋃
V ∪

⋃
E

)]

where pc denotes the closure of p and CC [. . .] is the set of connected com-
ponents. These three types of block cells are called vertices, edges, and faces
respectively. Fig. 1 shows some example (P, dim) pairs; these variants will be
discussed in Sect. 2.2.

The neighborhood of a block cell c is defined as N(c) := {ci | c ∪ ci is connected}
where c, ci ∈ V ∪E∪F . Note that N(c) will never contain cells ci �= c of the same
type as c, since the basis cells would have identical types and thus be combined
into one connected component.

If all vertices and edges are simply connected (i.e. have no holes), and ∀e ∈ E :
((|N (e)| ≥ 3) ∧ (N (e) ∩ V ≤ 2)) holds, we can represent the discrete topology
of the block cells with an XPMap [7], and use this to build a GeoMap.

Definition 3. A GeoMap is a tuple (P, X, g) where P is a set of basis cells,
X is an XPMap that represents their induced topology, and g : V ∪E ∪F → 2P

is a relation that assigns the set of contained basis cells to each block cell.

The handling of both basis- and block cells is simplified by introducing labels:
We require each basis cell p to have a unique label b = label (p) (usually, this
will be the pixel coordinate) and assign unique labels l to the block cells. Note
that we do not require the block cell labels to be continuous, since this leads to
difficulties later with modifications which remove cells.



The GeoMap: A Unified Representation for Topology and Geometry 135

blue/hatched: dim 0
dark red: dim 1
white: dim 2

Fig. 1. Example GeoMap cells (left to right: 8-connected pixel boundaries, inter-pixel
interpretation, explicit crack edges, example boundary on hexagonal pixel grid)

2.1 GeoMap Interface Design

In order to make the GeoMap a useful representation in practice, it is important
that we define an abstract interface that reflects all requirements of segmentation
algorithms. In [8] we systematically examined these needs of several algorithms;
the results will be summarized in the following.

Topology Queries. There are several topology-related tasks that must be sup-
ported: Testing whether two regions are adjacent, querying all boundary com-
ponents of a face, and listing all adjacent faces.

Cell Geometry Queries. Segmentation algorithms frequently need to know
the shape of block cells, for example for collecting statistics on their basis cells’
properties (i.e. boundary strength, mean region color).

Inverse Geometry Queries. Interactive segmentation requires a mapping
from a specific basis cell (e.g. position obtained with a pointing device) to the
block cell at that position.

Transformations. Considering segmentation as the transformation of an initial
partitioning of the image plane into the desired result, we need operations like
removing single edges or completely merging faces.

Application-Specific Data. Algorithms will rely on application-specific prop-
erties of the cells, for example to decide about which regions to merge. Thus, it
must be possible to store and update this information in such a way that it is
kept consistent with the current segmentation.

The last requirement is satisfied through the association of labels with each
block cell, which can be used to index arrays with application-specific data; it
is important however that these labels do not change in undefined ways. We
will now explain solutions to the other tasks in detail, and then illustrate our
implementation in Sect. 2.2.

Topology Queries: The DartTraverser Concept. Since the GeoMap is
based on XPMaps, the basic entities used to encode its topology are darts. In
order to make inspection of the topology as easy as possible, we introduce the
DartTraverser concept, which uses a dart d to represent the current position
during navigation within the GeoMap.

A GeoMap defines the permutations σ, α, and ϕ on its darts. The current
position of a DartTraverser can be changed by moving to the successor or
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predecessor of the current dart in σ (which corresponds to turning around the
vertex), α (jumping to the opposite side of the edge), or the composed permu-
tation ϕ = σ−1 ◦ α (following the contour of the face to the left):

nextSigma: d := σ (d) nextAlpha: d := α (d) nextPhi: d := φ (d)

prevSigma: d := σ−1 (d) prevAlpha: d := α−1 (d) prevPhi: d := φ−1 (d)

Now we do not only want to navigate on the darts, but we also want to access
any information associated with the vertices, edges, or faces, so the DartTra-
verser interface also allows to query the identifying labels of the vertex which
the current dart is attached to (represented by the orbit σ∗ (d)), the edge it
belongs to (α∗ (d)) and the face to the left (ϕ∗ (d)).

startNodeLabel: d �→ label (σ∗ (d)) endNodeLabel: d �→ label (σ∗ (α (d)))
edgeLabel: d �→ label (α∗ (d))

leftFaceLabel: d �→ label (φ∗ (d)) rightFaceLabel: d �→ label (φ∗ (α (d)))

Geometry Queries. As stated above, there need to be means to i) get the block
cell associated with a given basis cell or to ii) query all basis cells belonging to
one block cell. In order to answer the first question, the GeoMap offers

cellAt: b �→ l

which returns the label l of the block cell for which g (l) contains the basis
cell labelled b. The second task - finding all basis cells belonging to a cell - is
usually closely related to collecting properties of these basis cells (e.g. finding
the mean color, inspecting the gradient, calculating the center of mass). This
can be accomplished by querying the GeoMap for a CellScanIterator:

cellScanIterator: l �→ CellScanIterator ({label (p) |p ∈ g (l)})

This CellScanIterator is then used to iterate over the basis cell labels, which
are needed in order to look up the properties for the corresponding cells.

Transformations. Since image segmentation is a dynamic process, the Ge-
oMap would be useless without means for modification. An important design
decision for this part of the interface is that the GeoMap should offer a small
set of simple transformations, which makes formal correctness proofs possible
and ensures that the representation stays in a consistent state. Non-admissible
transformations can be rejected by checking the preconditions of each operation.

Köthe [5] proposes a set of Euler Operators [9] for image segmentation; these
are operators that leave Euler’s equation on the number of cells and connected
boundary components |C| in a planar XPMap valid: |V | − |E| + |F | − |C| = 1.
We define the following operations on the GeoMap G, which all take the form
G, d �→ G′ and return a G′ = (P, X ′, g′) with X ′ and g′ created from X and g
as follows:
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merge edges merge the two edges α∗ (d) and α∗ (σ (d)) and the vertex σ∗ (d)
(must have degree 2) into one single edge (|V ′| = |V | − 1, |E′| = |E| − 1)

remove bridge merge the edge α∗ (d) (which must be a bridge) into the sur-
rounding face ϕ∗ (d) (|E′| = |E| − 1, |C′| = |C| + 1)

remove isolated vertex merge an isolated vertex represented by the empty
orbit α∗ (d) into the surrounding face ϕ∗ (d) (|V ′| = |V | − 1, |C′| = |C| − 1)

merge faces merge the two faces ϕ∗ (d) and ϕ∗ (σ (d)) (must not be identical)
and their common edge α∗ (d) into one face (|E′| = |E| − 1, |F ′| = |F | − 1)

The relation g′ is derived from g by assigning the basis cells of all cells being
merged to the resulting cell.

Note that each of the above operations is a reduction (reducing the number
of cells). Conceptually, they all have inverse operations that could be used to
e.g. split block cells, effectively creating new ones from the same basis cells.
Additionally, split operations could be applied on basis cells, which would change
P. However, adding geometric information introduces an asymmetry between
split and merge operations (the former are no longer parametrizable with a
single dart), which is why split operations are beyond the scope of this paper.

Note that the GeoMap handles both updating the geometry and the topol-
ogy, but the application-specific information on the cells has to be updated by
the application. Usually, it is possible to combine the statistics of the cells be-
ing merged in order to get the statistics of the resulting cell, and a GeoMap
implementation can provide hooks for callbacks to ensure that this happens.

Building GeoMap Pyramids. We consider segmentation as the transforma-
tion of an initial partitioning of the image plane into the desired result. Usually,
the initial tessellation is an oversegmentation as resulting from a watershed trans-
form or optimal cut [10], or the trivial one where every pixel is a separate region
(i.e. the first segmentation step is to look for any boundary evidence). In this set-
ting, further segmentation stages can be computed by using the above reduction
operators, and one can arrange the results over time in a pyramid, where each
level contains less cells than the one below. This corresponds to the approach of
irregular pyramids [3, 2, 4], which can be used to create more coarse, abstracting
segmentations without losing the ability to represent important detail.

2.2 CellImage Realization

So far, we have concentrated on the abstract properties of a GeoMap; now we
focus on a possible implementation.

We propose a straight-forward extension of the common label images as in-
ternal representation for a GeoMap: The geometry information is stored in a
CellImage, the pixels of which are the basis cells and each carry a dimension
(specifying their type - vertex, edge, or face pixel) and the label of the block cell
they belong to. The complete topological information is derived from this inter-
nal representation (see Fig. 2) according to Definition 3, which offers consistent
views on the same segmentation from both perspectives.

The relation dim (page 134) is crucial for the correct derivation of topology
from the basis cells (i.e. pixels). In the past, researchers have concentrated on
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crack edge-based interpretation of region images (inter-pixel boundaries, [11, 4,
1]), but it has also been shown that a topological representation can be derived
from “thin”, 8-connected boundaries (resulting from a watershed segmentation
for example) [7]. Note that inter-pixel contours are commonly made explicit
by doubling the image size and inserting boundary pixels, but the resulting 4-
connected contours are visually much less appealing than 8-connected contours
due to strong staircase effects. On the plus side, inter-pixel nodes always consist
of one basis cell and have limited degree, which makes crack edge contours much
easier to use. Definition 3 allows for both inter-pixel contours and explicitly
represented ones on square or hexagonal pixel grids. We will concentrate on the
interesting case of 8-connected boundaries in the following, since it has not yet
received as much attention as the inter-pixel approaches.

Moving in the Orbits. Lets have a look at how navigation through the topol-
ogy works in some examples. Our internal representation of a DartTraverser
is a pixel position and a direction, pointing to one of the pixel’s neighbors (in-
dicated by the arrows in Fig. 2).

α-orbit: Finding the opposite half-edge is accomplished by simply following
the edge pixel-wise to the next vertex pixel and turning around. Both crack-
edges and the boundary pixel classification by Köthe [7] guarantee by definition
that each edge pixel has a unique successor and predecessor.

σ-orbit: Finding the next dart in the σ-orbit of a Khalimsky vertex is straight-
forward, since its degree is limited to the number of four direct neighbors. In
the case of 8-connected boundaries it involves a more complex procedure: Here,
vertices can consist of more than one pixel, which means that their contour has
to be followed in order to find the σ successor (cf. Fig. 2 right).

Giving Access to the Geometry. Section 2.1 introduced the geometry-related
part of the GeoMap ADT, notably the CellScanIterator, which allows to
iterate over the labels of all basis cells (pixels) of a given block cell (cf. g in
Def. Definition 3). It can be efficiently realized by scanning the internal Cell-
Image (restricted to the cached bounding box of the block cell) and stopping
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Right : Detailed series of intermediate states for finding two σ successors
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Fig. 3. CellScanIterator scanning edge 183 in a gradient magnitude image

at pixels belonging to the cell being queried. At each step, the iterator returns
the basis cell’s label (i.e. its position), which is then used to look up properties
in any application-specific image, for example to find the mean color of a region
in the original image, or the gradient estimates on a given edge (cf. Fig. 3).1

3 Application

The GeoMap is designed to serve as a versatile representation for many segmen-
tation algorithms. We have employed it to implement a variety of approaches,
some of which we will describe here.

Canny Hysteresis. Canny’s segmentation approach is undoubtedly the most
well-known one, and its steps are still representative for its state-of-the-art de-
scendants: After collecting initial evidence for edges (the initial oversegmentation
in our case), the candidate set is filtered to get the final result. We implemented
this hysteresis thresholding on the basis of the edges in our GeoMap. However,
we are not limited to assess the edges based on gradient information, but also
implemented measures based on the adjacent faces (e.g. difference of their mean
colors, T-test, . . . ).

Contraction Kernels. The GeoMap allowed us to implement irregular pyra-
mids as in [2] by grouping a set of Euler Operations into complex contractions.
Furthermore, the CellScanIterator made it easy to implement (e.g. color-
based) salience measures to define the contraction kernels.

Active Paintbrush. In contrast to the above, this tool relies entirely on human
interaction; is allows to “paint over” region boundaries to initiate region merge
operations [12]. It is very useful to interactively mark fine structure in low-
contrast images (e.g. angiography). Since our framework is based on one common
representation, it is also possible to use the paintbrush to correct errors made

1 A more efficient implementation directly scans the target image in parallel, making
the indirection via the position unnecessary.
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Canny-like Hysteresis Thresholding:

Active Paintbrush:

(six paintbrush trajectories indicated with red lines)

Intelligent Scissors:

cross: last seed-point
arrow: current pointer

Fig. 4. Example screenshots showing the tools in action

by the other, automatic tools. To facilitate this, we augmented it with a means
to protect the boundary of single regions from being changed.

Intelligent Scissors. After the selection of an initial seed point on a contour,
this semi-interactive tool highlights the optimal path to the current pointer posi-
tion in real-time with a live-wire [13]. A complete contour can be delineated with
only a few additional selections. In order to define the optimal path, we mea-
sure and combine the significance of single edges - another example where the
abstraction level of the GeoMap formalism led to directly reusable components,
namely the cost measures from the hysteresis tool.

Implementing these algorithms based on the GeoMap formalism means to
abstract from the boundary definition. We have used all these algorithms with
both a crack edge representation and 8-connected thin boundaries [7] in an
irregular pyramid, whose level 0 contained a watershed oversegmentation. This
conforms to the recent approach of starting with superpixels [10], not pixels
directly.

Note that our experimental results prove that it is possible to achieve this
level of abstraction not only without losing flexibility, but that generic pro-
gramming techniques allow for very efficient realizations of the formalism. For
example, the GeoMap of a 640× 480 image initially segmented into 11.161 ver-
tices, 17.930 edges, and 6.775 faces can automatically be reduced (based on face
statistics) into a final result with about 30 regions in 3.6 seconds on a Pentium
III notebook with 800 MHz.
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4 Conclusion

The GeoMap formalism demonstrates that the integration of topology and ge-
ometry in one unified representation leads to a versatile basis for image segmen-
tation. Adapting algorithms to this framework leads to concise, comprehensible
code and does not sacrifice speed. At the same time, the GeoMap introduces
a level of abstraction that facilitates the decomposition of published segmenta-
tion methods and (re-)combination of approaches, i.e. interchange edge salience
definitions or apply several algorithms on the same image.

In the future, we want to extend the GeoMap formalism to work with other
(subpixel- or 3D) boundary definitions and add split operations and means to
refine the contours retroactively. On the application side, we are currently work-
ing on the integration of learning methods and more sophisticated edge salience
measures based on boundary continuity.
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Abstract. Graph pyramids are often used for representing irregular
pyramids. Combinatorial pyramids have been recently defined for this
purpose. We define here pyramids of n-dimensional generalized maps.
This is the main contribution of this work: a generic definition in any di-
mension which extend and generalize the previous works. Moreover, such
pyramids explicitly represent more topological information than graph
pyramids. A pyramid can be implemented in several ways, and three
representations are discussed in this paper.

Keywords: Hierarchical data structure, irregular pyramids, generalized
map, n-G-map pyramids, multi-resolution.

1 Introduction

Hierarchical structures are often used for representing a same object with differ-
ent resolutions. The first level of such a structure generally represents the object
with a very fine precision, then the precision decreases as the level increases.
For image processing, pyramids are used for representing different segmentation
levels of an image. It is thus possible to get immediately the segmentation level
suited for a particular process. It is also possible to modify a pyramid level, for
instance when changing the segmentation criteria.

Irregular image pyramids have been studied by many authors, and used for
several applications ([1, 2, 3, 4, 5, 6, 7, 8]). An irregular pyramid is defined as a
stack of reduce graphs where each graph is built from the precedent level by a
sampling or decimation process. Brun and Kropatsch have extended this notion
by defining pyramids in which each level is a 2-dimensional combinatorial map
([9, 10, 11]). Combinatorial maps represent the topology of any subdivisions of
any orientable surfaces without boundary.

We extend these works for any dimension by defining pyramids of n-dimen-
sional generalized maps (or n-G-maps). This is the main result of this paper.
Generalized maps represent the topology of any subdivisions of any orientable or
not orientable n-dimensional manifolds with or without boundary (see [12, 13]).
So, pyramids of n-G-maps can be used in order to process images in 2D, 3D,
as well as 4D (for instance for tracking objects in 3D image sequences). An
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other interest of generalized maps is that their definition is homogeneous for any
dimensions. This facilitates the definition of generic operations and algorithms.

Our work follows that of Damiand and Lienhardt who have defined for
n-G-maps a general operation for removing and contracting cells of any di-
mensions [14]. More precisely, each level of a pyramid is a simplification of the
previous one, obtained by applying this operation.

We recall in section 2 the notion of generalized map as well as the opera-
tion of cell contraction and removal. Generalized map pyramids are defined in
section 3. We study in section 4 three different representations of generalized
map pyramids. We discuss in section 5 the construction of a pyramid in the
context of image segmentation. Generalized map pyramids and graph pyramids
are compared in section 6. Further issues are discussed in section 7.

2 Recalls: n-G-Map, Cell Removal and Contraction

n-dimensional generalized maps (or n-G-maps) represent the topology of n-
dimensional subdivided objects, and more precisely the topology of quasi-mani-
folds (see [12, 15, 13]). An n-G-map is a set of abstract elements (darts), together
with applications defined on these darts. Cells are implicitly represented as sets
of darts. (see [13] for more details).

Definition 1 (n-G-map and i-Cell (cf. Figure 1)). Let n ≥ 0.
An n-dimensional generalized map G is defined by G = (D, α0, . . . , αn) where:

1. D is a finite set of darts;
2. ∀k, 0 ≤ k ≤ n, αk is an involution1 on D;
3. ∀k, j, 0 ≤ k < k + 2 ≤ j ≤ n, αkαj is an involution.

Let d ∈ D, N = {0, 1, . . . , n} and let i be such that 0 ≤ i ≤ n.
The i-cell incident to d is the orbit 2

<>N−{i} (d) =< α0, . . . , αi−1, αi+1, . . . , αn > (d).

In order to define n-G-map pyramids, Damiand and Lienhardt have proposed
an operation for simultaneously removing and contracting cells of any dimensions
[14](cf. figure 2). These cells have to satisfy two preconditions: they are disjoint
two by two3, and their degree is two.

1 An involution f on a finite set S is a one to one mapping from S onto S such that
f = f−1.

2 Let {Π0, . . . , Πn} be a set of permutations on D. The orbit of an element d related
to this set of permutations is < Π0, . . . , Πn > (d) = {Φ(d), Φ ∈< Π0, . . . , Πn >},
where < Π0, . . . , Πn > denotes the group of permutations generated by Π0, . . . , Πn.

3 The set of i-cells is a partition of the set of darts of the n-G-map, for each i between
0 and n. Two cells are disjoint if their intersection is empty, i.e. when no dart is
shared by the cells.
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Fig. 1. (a) A subdivision of a surface. (b) The corresponding 2-G-map. Darts are
represented by numbered black segments. Two darts in relation by α0 share a little
vertical segment (ex. darts 1 and 2). Two darts in relation by α1 share a same point
(ex. darts 2 and 3). Two distinct darts in relation by α2 are parallel and close to each
other (ex. darts 3 and 17); otherwise, the dart is its own image by α2 (ex. dart 2). The
vertex incident to dart 2 is < α1, α2 > (2) = {2, 3, 16, 17}, the edge incident to dart 3
is < α0, α2 > (3) = {3, 4, 17, 18}, and the face incident to dart 9 is < α0, α1 > (9) =
{7, 8, 9, 10, 11, 12}

a b

Fig. 2. An example of simultaneous removal and contraction of cells of different di-
mensions. (a) A 2-G-map where the darts of removed 0-cells, removed 1-cells and
contracted 1-cells are respectively marked by empty squares, circles and gray disks. (b)
The resulting 2-G-map

For i ∈ N , Ri is the set of removed i-cells, and Ci is the set of contracted
i-cells. Note that Rn = ∅ and C0 = ∅ since it is not possible to remove n-cells
nor to contract 0-cells (see [14] for more details).

3 Definition of n-G-Map Pyramids

An n-G-map pyramid is a hierarchical structure. Each level is an n-G-map:
the first level represents the initial data; the other levels represent successive
simplifications. A possible bottom-up construction is the following one. Level 0
is an n-G-map which represents the initial data. According to the application,
a process will define two sets for any dimension i (i ∈ N): R0

i (resp. C0
i ) is the

set of i-cells which will be removed (resp. contracted). The cells of these sets
have to satisfy the preconditions of the removal and contraction operation. The
application of this operation gives the level 1 map. This process is reapplied in
order to get the other levels of the pyramid.
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Fig. 3. A 2-G-map pyramid composed
of three levels. The darts of removed
0-cells (resp. 1-cells) are marked by
empty squares (resp. circles)

Fig. 4. A 3-G-map pyramid composed
of three levels. The second level is ob-
tained by removing 2 faces, and the
third level is obtained by removing 4
edges (the two upper edges and the two
edges in the background which are ad-
jacent to the first ones)

The formal definition of an n-G-map pyramid is the following:

Definition 2 (n-G-map Pyramid). Let n, m ≥ 0. A m + 1 level pyramid P
of n-dimensional generalized maps is the set P = {Gk}0≤k≤m where:

1. ∀k, 0 ≤ k ≤ m, Gk is the n-G-map (Dk, αk
0 , . . . , αk

n),
2. For each k, 0 ≤ k ≤ m, for each i, 0 ≤ i < n, let Rk

i (resp. Ck
i ) be sets of

i-cells such that: cells are disjoint two by two and the degree of each cell is
equal to 2, i.e.:
– ∀C, C ′ ∈ ⋃n

i=0(R
k
i ∪ Ck

i ), C ∩ C ′ = ∅,
– ∀i, 0 ≤ i ≤ n− 2, ∀d ∈ Rk

i , dαk
i+1α

k
i+2 = dαk

i+2α
k
i+1,

– ∀i, 2 ≤ i ≤ n, ∀d ∈ Ck
i , dαk

i−1α
k
i−2 = dαk

i−2α
k
i−1,

3. ∀k, 0 < k ≤ m, Gk is obtained from Gk−1 by removing the cells of ∪n
i=0R

k−1
i

and contracting the cells of ∪n
i=0C

k−1
i .

Examples of 2D and 3D pyramids are provided in figures 3 and 4.
Two major properties of n-G-map pyramids are:

– each dart which belongs to a removed or a contracted cell of level k does not
belong to another removed or contracted cell in the same level or in another
level.

– Let k, 0 ≤ k < m. Note that a one to one mapping ϕk exists between the
surviving darts of Gk (i.e. the darts which are not removed nor contracted),
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and the darts of Gk+1 (ϕk : Dk − ⋃n
i=0(R

k
i ∪ Ck

i ) −→ Dk+1). In order to
simplify, we will denote a dart of Gk and its image in Gk+1 by the same
name. So, we have: Dk+1 = Dk −⋃n

i=0(R
k
i ∪ Ck

i ).

More formally:

Proposition 1.

1. ∀i, j ∈ N , ∀k, l ∈ [0..m− 1] we have:

⎧⎨⎩
Rk

i ∩ Cl
j = ∅,

Rk
i ∩Rl

j = ∅, with i �= j or k �= l,
Ck

i ∩ Cl
j = ∅, with i �= j or k �= l.

2. ∀k, 0 ≤ k < m, Dk+1 ⊆ Dk.

These properties can be easily deduced from the definition of the removing and
contracting operation [14], and from the definition of n-G-map pyramids. More-
over these properties are useful for the definition of representations of n-G-map
pyramids, and more precisely for the implicit and hierarchical representations.

4 Different Representations of n-G-Map Pyramids

An n-G-map pyramid can be represented more or less explicitly according to the
performance expected in space and in time. We present in this section three pos-
sible representations: explicit, hierarchical and implicit (see figure 5). Note that
each representation has to satisfy the constraints of the definition of n-G-map
pyramids, which can be easily expressed for each representation. Note also that
these three representations contain the same information, but each of them has
different advantages and drawbacks (explain in the following).

Explicit n-G-Map Pyramid : each level k (i.e. Gk) and each bijection ϕk are
explicitly represented (see figure 5-a). The representation contains thus m + 1
n-G-maps, and each dart is linked with its predecessor (except the darts of level
0) and with its successor4 (except the darts of the last level and the darts which
belong to a removed or contracted cell). Moreover, for each level, a dart which
belongs to a removed or contracted cell in this level is marked by the type of the
operation (contraction or removal) and the dimension of the cell.

Hierarchical n-G-Map Pyramid : Dk − ⋃n
i=0(R

k
i ∪ Ck

i ) is identified with Dk+1

for each k (0 ≤ k < m) but each involution αi is explicitly represented (∀i,
0 ≤ i ≤ n). This representation (see figure 5-b) contains a single set of darts,
and for each dart one table which represents involutions α for all levels (the size
of this table is the product of the number of involutions by the number of levels
for each dart). If a dart disappears at level k, its images by involutions α are only
defined from level 0 to level k. A possible optimization is the following: when
dαk

i = dαk+1
i , the image of d is represented only once. More precisely, given i

4 The predecessor relation corresponds to (ϕk−1)−1 and the successor relation ϕk.
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Fig. 5. Three representations of a same pyramid. For each representation, the corre-
sponding array shows images by involutions α for the two darts 1 and 2. (a) Explicit.
Removed 0-cells (resp. removed 1-cells) are marked by empty squares (resp. circles).
(b) Hierarchical. Each dart is drawn in the last pyramid level where it exists. When
two darts linked by αi are drawn in the same level, their link αi is drawn in the usual
way. Otherwise, the links α1

0 and α0
0 between two darts of two different levels are rep-

resented by lines with empty lozenge and the link α0
1 by line with filled lozenge. (c)

Implicit. Removed 0-cells of level 0 (resp. removed 1-cells of level 1) are marked by
empty squares (resp. circles)

(0 ≤ i ≤ n) and a dart d, we only memorize distinct images of d by αi, and for
each dart, the last level at which it belongs.

Implicit n-G-Map Pyramid : this representation contains only the first level (i.e.
G0) and three marks are associated with each dart. The first one corresponds
to the type of operation (removal or contraction) which suppresses the dart (if
the case arises). The second one corresponds to the dimension of the removed
or contracted incident cell. The third one indicates the level at which the cell
disappears.

The choice of one representation depends on the particular needs of the ap-
plication, since these representations offer different advantages and drawbacks.
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The explicit representation is characterized by an important redundancy of
information, and thus an heavy cost in memory space. On the other hand, each
pyramid level can be directly accessed. So, the extraction of a particular level or
the modification of the pyramid can be easily achieved.

The hierarchical representation is less costly in memory space, since there
are less redundant informations. Any level can be directly extracted by using
involutions of this level. Moreover, given a cell, one can directly access to the set
of cells of a lower level which are “merged” into this cell. This can be useful for
example for the representation of different levels of details (see [16] where a data
structure, based upon a similar principle, is proposed in order to model complex
architectural environments). On the other hand, it is usually difficult to modify
the pyramid, since all levels are not explicitly represented. More precisely, it is
difficult to propagate modifications between the pyramid levels.

The implicit representation has an optimal complexity in memory space since
there is no redundant information. Moreover, the pyramid can be directly mod-
ified, avoiding the problem related to the information propagation. A similar
representation is proposed by Brun and Kropatsch [17] for representing a 2D
combinatorial pyramid. The main drawback of this representation is that a
pyramid level can not be directly accessed: it is necessary to compute it when
required.

5 Construction of a Pyramid for Image Segmentation

For image processing, pyramids are used in particular in order to keep in memory
different segmentations of a same image. In order to construct an n-G-map
pyramid associated with a multi-level segmented image, level 0 is associated
with the initial image. A new level is constructed through two steps: first, the
cells of the “previous segmentation” corresponding to homogeneous regions are
“merged” into one cell; second, the resulting n-G-map is simplified.

An example is the following. We want to segment a 3D gray level image by
using a simple gray level distance as homogeneity criterion. The initialization
consists in associating a 3-G-map with the initial image (cubic volumes are asso-
ciated with voxels). A label representing the gray level of the corresponding voxel
is associated with each volume. The voxels corresponding to a homogeneous re-
gion are merged. This is achieved by removing the faces which are between the
corresponding volumes. More precisely, a process based upon the homogeneity
criterion marks level 0 faces, then the 3-G-map is duplicated and the removal
and contraction operation is applied, producing level 1 map. The same principle
is applied in order to compute the following levels. It is possible to modify the
marking process in order to control the topology of the 3-G-maps, for instance for
avoiding disconnections. In order to reduce the required memory space, the rep-
resentation of the boundary between two regions can be simplified, by merging
the boundary faces into one face. This simplification can be achieved by removing
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the degree 2 edges and then the degree 2 vertices. Other simplifications can be
made in order to obtain a minimal representation (see [18, 19]). A new level is
constructed by the same two phases: first marking, duplication and removal of
faces; then simplifications by removing degree 2 edges and vertices.

For 2D images, pixels which make a homogeneous region (i.e. faces of the
2-G-map) are merged by removing the edges between these faces. The 2-G-map
is then simplified by removing the degree 2 vertices. For 4D images, 4D cells
are merged by removing the volumes which lie between them. The boundary
between two regions can be simplified by removing the degree 2 faces, then the
degree 2 edges and then the degree 2 vertices. More simplifications can be done
depending on the particular needs for each application.

6 Comparison with Graph Pyramids

Irregular image pyramids are often represented by adjacency graph pyramids.
A vertex of such an adjacency graph corresponds to a region of the image and
an edge symbolizes the adjacency relation between the two regions associated
with the extremity vertices. Figure 6 shows different representations of a seg-
mented image. Note that one region is included into an other one, and that
two regions are adjacent several times to each other. An adjacency graph rep-
resents all types of adjacency in the same way (figure 6-b), leading to a loss of
information.

Dual graph pyramids [3] are an extension of adjacency graph pyramids, de-
signed in order to take into account multi-adjacency and inclusion (see figure 6-c).
A dual graph is defined as a multi-graph together with its dual graph (these two
graphs have to be connected). However, dual graphs as well as adjacency graphs
can not represent the topological order information for all cases (i.e. for instance
the order of faces around a vertex or the order of volumes around an edge or a
vertex). For example, figure 7 shows a gray level image representing a clover. It
is composed by six parts: the background, the stem, three leaves and the roots
(see figure 7-a). The corresponding dual graph is shown in figure 7-b. Due to
the self-loop, the edge orientation around vertices is loss and it is not possible
to know which leaf lies between the two others. On the other hand, n-G-maps,
and so n-G-map pyramids, represent inclusion, multi-adjacency and order, for
any dimension (cf. figure 6-d and figure 7-c).

An other drawback of adjacency graphs is the fact that all cells are not
represented. For instance in 2D (resp. 3D), vertices (resp. edges and vertices)
are not represented. More generally, adjacency graphs only represent n-cells and
n − 1-cells. n-G-maps represent all cells of any dimension, and all incidence
and adjacency relations between these cells. Figure 8 shows the example of a 3D
pipe, which extremities share only one edge. The corresponding adjacency graph
contains only two vertices (the pipe and the surrounding region) linked by one
edge. So, it is not possible to retrieve the information about the two extremities
of the pipe. This can be done using a 3-G-map.
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Fig. 6. Representation of a segmented image. (a) An image. (b) The corresponding
adjacency graph. (c) The corresponding dual graphs (primal graph in black and its
dual in gray). (d) The corresponding 2-G-map

A

Bg

C

B

E

D

A

E

D

C

B

Bg

A

D

E

Bg

C

B

a b c

Fig. 7. A 2D image of a clover. (a) The image. (b) The
corresponding dual graphs. (c) The corresponding 2-G-
map

Fig. 8. A 3D image rep-
resenting a pipe

7 Conclusion and Perspectives

Pyramids of n-dimensional generalized maps are here defined as stacks of reduce
n-G-maps where each n-G-map is built from the previous level by contracting or
removing cells. n-G-maps unambiguously represent the topology of subdivided n-
dimensional objects (for instance n-dimensional images). So, n-G-map pyramids
can be used in order to process 2D, 3D and 4D images. n-G-map pyramids can
be very useful for applications in which it is necessary to check or to control the
(evolution of the) topology of an object, for example when tracking objects in
video sequences.

n-G-map pyramids can be represented in different ways. We have discussed
three generic representations: explicit, hierarchical and implicit, and their advan-
tages and drawbacks which are important for choosing an efficient representation
according to the needs of the application (complexity in memory space and/or
in time). But we need to compare more precisely these three representations in
practical applications to list advantages, drawbacks and complexities.

n-G-map pyramids have several advantages, compared with adjacency graph
pyramids. Mainly, n-G-maps pyramids represent the whole topological informa-
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tion about n-dimensional multi-level subdivided objects. It is important since the
reduction between levels (achieved by the applications of removal and contrac-
tion operation) leads to particular cases (for instance multi-adjacency of cells)
which are usually not well handled by graphs.

We intend now to define and generalize the notion of receptive field for n-G-
map pyramids. This classical notion, defined for graph pyramids and 2D combi-
natorial map pyramids, establishes a relation between a cell at a given level and
the set of cells of lower levels which are contracted or removed into this cell.

It is also necessary to conceive operations for handling this structure: for
instance, for modifying any level of the pyramid by contracting or removing
a cell, by adding a new cell, etc. An important problem is the fact that it is
necessary to efficiently propagate these modifications for the other levels.
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Abstract. In this paper we explore how a spectral technique suggested
by quantum walks can be used to distinguish non-isomorphic cospectral
graphs. Reviewing ideas from the field of quantum computing we recall
the definition of the unitary matrices inducing quantum walks. We show
how the spectra of these matrices are related to the spectra of the transi-
tion matrices of classical walks. Despite this relationship the behaviour of
quantum walks is vastly different from classical walks. We show how this
leads us to define a new matrix whose spectrum can be used to distin-
guish between graphs that are otherwise indistinguishable by standard
spectral methods.

1 Introduction

Random walks are useful tools in the analysis of the structure of graphs. The
steady state random walk on a graph is given by the leading eigenvector of the
transition probability matrix, and this in turn is related to the eigenstructure of
the graph Laplacian. Hence, the study of random walks has been the focus of sus-
tained research activity in spectral graph theory. For instance, Lovász has written
a useful review of the subject [1], and spectral bounds have been placed on the
properties of random walks including the mixing times and hitting times [2].

From a practical perspective, there have been a number of useful applications
of random walks. One of the most important of these is the analysis of routing
problems in network and circuit theory. Of more recent interest is the use of ideas
from random walks to define the page-rank index for internet search engines such
as Googlebot [3]. In the pattern recognition community there have been sev-
eral attempts to use random walks for graph matching. These include the work
of Robles-Kelly and Hancock [4, 5] which has used both the standard spectral
method [4] and a more sophisticated one based on ideas from graph seriation [5]
to convert graphs to strings, so that string matching methods may be used. Gori,
Maggini and Sarti [6] on the other hand, have used ideas borrowed from page-
rank to associated a spectral index with graph nodes and have then used standard
subgraph isomorphism methods for matching the resulting attributed graphs.

One of the problems that limits the use of random walks, and indeed any
spectral method, is that of co-spectrality. This is the situation in which struc-
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turally distinct graphs present the same pattern of eigenvalues. Classic examples
are strongly regular graphs [7] and certain trees [8, 9].

Recently, quantum walks have been introduced as quantum counterparts
of random walks [10, 11]. Their behaviour is governed by unitary rather than
stochastic matrices. Quantum walks posses a number of interesting properties
not exhibited by classical random walks. For instance, because the evolution of
the quantum walk is unitary and therefore reversible, the walks are non-ergodic
and what is more they do not have a limiting distribution. The present applica-
tions of quantum walks are fast quantum algorithms for database searching [12],
graph traversal [13, 14], and the problem of element distinctness [15].

Although the analysis of quantum walks may seem detached from the prac-
tical problems listed above, they may offer a way of lifting the problems of
co-spectrality. In this paper, we aim to explore how unitary matrices can be
used to characterise graphs, and to study the walks they give rise to for strongly
regular graphs. To convert the adjacency matrix of the graph into a unitary form
we borrow ideas from quantum walks and combine the state space of the walk
with a ‘coin space’ which dictates the quantum amplitudes of the various paths.
Our main conclusion is that by making use of a unitary representation of the
adjacency structure problems of co-spectrality can be lifted, and random walks
can be used to distinguish otherwise indistinguishable graph structures.

2 Random Walks

2.1 The Classical Walk

Consider the graph G = (V, E) with vertex set V and set of undirected edges E =
{{u, v} : u, v ∈ V, u �= v}. The adjacency matrix, A, for the graph is given by

Aij =
{

1 if {i, j} ∈ E;
0 otherwise.

The elements of the transition matrix, T , are then

Tij = Aij/di

where di =
∑

j∈V Aij is the degree of the ith vertex.

The classical (discrete) random walk on a graph is described by a Markov
chain, {Xt}, with state space V . Transitions take place at discrete time intervals
between adjacent vertices in the graph with probabilities P (Xt = j | xt−1 =
i) = Tij .

A fundamental result for the random walk, provided it is irreducible and
aperiodic, is that there exists a unique probability distribution, πi, satisfying
the equations

πi =
∑
j∈V

Tijπj ∀j.
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This distribution plays an important role in characterizing the walk. For any
starting distribution we have

P (Xt = v) → πv as t →∞ ∀v.

Thus all walks approach a unique limiting distribution that is independent
of the initial state.

2.2 The Quantum Walk

Quantum walks on graphs are quantum analogues of classical walks on graphs.
There are two models, the discrete [16] and the continuous [13] quantum walk,
which require the use of different methods to carry out the quantization. Both
models were developed as a result of the interest in the possibilities of quantum
computing and both exhibit many interesting properties that distinguish them
from their classical counterparts. Although the behaviour of discrete and con-
tinuous versions are similar, the exact relationship is not yet fully understood.
In this paper we will concentrate on the discrete quantum walk. Of particular
interest to us is the possibility of using the quantum walk model to probe graphs
using classical computation.

Let {|j〉 : j ∈ V } be the basis states of a |V |-dimensional Hilbert space, H.
A vector in this space is of the form

|ψ〉 =
∑
j∈V

aj |j〉 aj ∈ C.

The inner product between two vectors |ψ〉 and |ψ′〉 is given by

〈ψ|ψ′〉 =
∑
j∈V

aj(a′
j)

∗.

The state space for the quantum walk is the space of all vectors in H normal-
ized according to the above inner product. This ‘superpostion’ means that any
normalized complex linear combination of allowed quantum mechanical states is
itself an allowed state. This allows the quantum walk to trace all possible paths
simultaneously and interfere constructively or destructively according to their
complex amplitudes. However, when a measurement is made of a quantum me-
chanical state according to a given basis just one of the basis states is observed
with probability

P
(|ψt〉 = |j〉) = |〈j|ψt〉|2 = aja

∗
j

and the wavefunction is said to ‘collapse’ to this state. All other information
about the complex amplitudes of the various basis states prior to the measure-
ment is lost.

Since measuring the walk causes the wavefunction to collapse to just one of
the basis states, it is necessary that the coin used to determine which edge to
traverse (more correctly the amplitudes given to traversing each of the possible
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edges) is also part of the quantum system, otherwise the result is simply the
classical walk. For a k-regular graph this is straightforward, the state space is
supplemented by a k-dimensional coin space and the edges labelled from 1 to k
such that each of the k edges associated with a particular vertex carries a different
label. The basis states of the walk are thus {|v〉 ⊗ |c〉 : v ∈ V, c = 1, . . . , k}.
Each step of the walk corresponds to one application of the unitary operator,
U = T (IV ⊗C), where C is the coin operator on the coin space, IV the identity
on the vertex space and T the transition operator on the composite space [10].
The transition operator takes the state |u〉|c〉 → |v〉|c〉 where the edge {u, v} is
labelled c. The coin operator is such that

C|c〉 =
k∑

j=1

ak|k〉 ∀c ∈ {1, . . . , k}, where
∑

j

aja
∗
j = 1,

so that if the walk enters a vertex along one of the edges incident on it, it will
leave along all k edges incident upon it with amplitudes dependent on the form
the coin takes. The coin operator must be permutation invariant if the walk is
to be independent of the labelling of the edges but can be varied so as to affect
the mixing properties of the walk. The ‘Grover coin’ is typically chosen as the
coin operator as it is the unitary operator furthest from the identity that is
permutation invariant, and hence should provided the fastest mixing times

G
(k)
ij =

{ 2
k − 1 if i = j;
2
k otherwise.

When the graph is not regular then coin operators of different dimensions
are needed for different vertices, consequently the states for the walk and the
operator U can no longer be written in the simple product form given above.
Nevertheless, we can still write a general expression for the 2|E| × 2|E| matrix
U , whether or not the graph is regular:

Uij,kl =
{ 2

dj
− δil if j = k

0 if j �= k
∀ (i, j), (j, i) where {i, j} ∈ E.

The difference between classical and quantum walks and how the properties
of quantum walks can be utilized is a topic of much research [14] [12] [17]. A
major difference between a classical and a quantum walk is that a quantum walk
does not tend towards a limiting distribution: since the evolution is unitary the
magnitude of the quantity |ψt〉− |ψt−1〉 always remains the same. For a number
of graphs hitting times of quantum walks have been found to be exponentially
faster [14] [13], but in general quantum walks mix quadratically faster [16]
than their classical analogues.

3 Analysis of the Unitary Representation

In this paper we wish to concentrate on the how the idea of quantum walks can
be used classically. The spectrum of the unitary matrix governing the evolution
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of a quantum walk turns out to be related to the spectrum of the transition
matrix for the analogous classical walk. The unitary matrix can be written as

Uij,kl = AikAjlδjk

(
2
dk
− δil

)
.

Let v be an eigenvector of U with eigenvalue λ, then

λvij =
∑
kl

Uij,klvkl

=
∑
kl

2
dk

AikAjlδjkvkl −
∑
kl

AikAjlδjkδilvkl

=
2Aij

dj

∑
l

Ajlvjl −Aijvji.

Let e be an eigenvector of T with eigenvalue μ, we show that

vij =
Aij

dj
− λ∗ Aijei

di

satisfies this equation and hence is an eigenvector of U . In fact

λvij = 2
Aij

dj

∑
l

Ajlvjl −Aijvjl

= 2
Aij

dj

∑
l

A2
jl

el

dl
− 2λ∗ Aij

dj

∑
l

A2
jl

ej

dj
−AijAji

ei

di
+ λ∗AijAji

ej

dj

= 2
Aij

dj

∑
l

Ajl
el

dl
− 2λ∗ Aijej

d2
j

∑
l

Ajl −Aij
ei

di
+ λ∗Aij

ej

dj

= 2μ
Aijej

dj
− 2λ∗ Aijej

dj
−Aij

ei

di
+ λ∗Aij

ej

dj

=
Aijej

dj
(2μ− λ∗)−Aij

ei

di

= λ(
Aijej

dj
(2λ∗μ− λ∗2)− λ∗Aij

ei

di
)

which is true if (2λ∗μ−λ∗2) = 1. It follows that λ = μ±i
√

1− μ2. The remaining
eigenvalues are ±1 each with multiplicity |E| − |V |. So the spectrum of U is
completely determined by the spectrum of the transition matrix T . However,
the random walk induced by U still has advantages over its classical analogue.
In the next section we consider how we can make use of the differences between
the walks.

3.1 Interference and the Supporting Digraph

Unlike the classical walk, the quantum walk traverses all possible paths simul-
taneously with amplitudes corresponding to the probability of each path. These



158 D. Emms et al.

walks are not independent but are able to constructively or destructively inter-
fere; giving rise to probability distributions on the vertices dependent upon this
effect. This appears to allow the walk to probe and distinguish graphs more effec-
tively than happens classically. The state of the walk after t steps is given by U t,
the (i, j) entry giving the amplitude in the state |i〉 at time t for a walk starting
in the state |j〉. Define the supporting digraph [18] for the unitary matrix V to
be the digraph with adjacency matrix

Uij =
{

1 if Vij �= 0;
0 otherwise.

The digraph supporting the unitary U t has a non-zero (i, j) entry if and
only if there is a non-zero probability of the walk starting in the state j being
observed in the state i after t steps, where each state corresponds to a graph
vertex together with a coin state. For small values of t this pattern of non-zero
entries is more complex than is the case for the classical walk. It is the use of
this matrix that we suggest for the task of distinguishing graphs, to this effect
we propose the following algorithm:

Let G and H be two graphs and let sp(X) denote the spectrum of the ma-
trix X.

1. Construct UG and UH .
2. Compute sp(UG) and sp(UH).

(a) If sp(UG) �= sp(UH) then G �= H.
(b) If sp(UG) = sp(UH) then go to the next step.

n. (n ≥ 3) Compute sp(Un−1
G ) and sp(Un−1

H ).

(a) If sp(Un−1
G ) �= sp(Un−1

H ) then G �= H.
(b) If sp(Un−1

G ) = sp(Un−1
H ) then go to Step n + 1.

The idea behind the algorithm is simple. Given any two matrices X and
Y , if sp(X) = sp(Y ) then sp(Xt) = sp(Y t) for all t. This is not the case if
we consider At

G and U t
G. However, it is usually the case that (At

G) = Jn, the
all-one matrix, even for small values of t. Consequently, {sp(At

G)}∞
t=2 is of little

use for distinguishing graphs. On the other hand, UGij
�= 0 does not imply that

U t
Gij

�= 0, for all t. Thus U t
G is not necessarily the all one matrix and sp(U t

G)
may still contain information about G. In practice we have not needed to go
beyond step 4 to distinguish non-isomorphic graphs.

4 Experiments

Traditional spectral methods for various graph matching tasks rely on the use
of the spectrum of either the adjacency or Laplacian matrices, but these meth-
ods fail when faced with a pair of non-isomorphic cospectral graphs. Strongly



Towards Unitary Representations for Graph Matching 159

regular graphs (SRG) provide examples of such graphs. A graph is k-regular
if every vertex has the same degree k. A SRG with parameters (n, k, λ, μ) is a
k-regular graph on n vertices, where each pair of adjacent vertices and each pair
of nonadjacent vertices have exactly λ and μ common neighbours, respectively
[7]. The spectra of the adjacency and Laplacian matrices are completely deter-
mined by the parameter set and hence any two co-parametric SRG are cospec-
tral with respect to these matrices. At step n = 4, that is considering sp(U3

G)
and sp(U3

H), the algorithm in the previous section was able to distinguish all
co-parametric non-isomorphic SRG tested, which we summarize Table 1. In ad-
dition, this method was also able to distinguish between pairs of co-immanantal
trees as constructed in [9].

As an example, let us consider the two non-isomorphic SRG with parameters
(16, 6, 2, 2) in Figure 1. We have

sp(AG) = sp(AH) = {[−2]9, [2]6, [6]}.

and
sp(LG) = sp(LH) = {[0]1, [4]6, [8]9}.

However,

sp(U3
G) = {[−7− 2i]15, [−7 + 2i]15, [−5]9, [−1]18, [1]27, [3]5, [5]6, [45]1}

and

sp(U3
H) = {[−7− 2i]15, [−7 + 2i]15, [−5]6, [−1]24, [1]21, [3]2, [5]9, [45]1}.

Hence the algorithm is able to distinguish between these graphs.
Within each set of co-parametric SRG in Table 1, we computed a vector, −→e ,

of the ordered eigenvalues of U3
G, for every graph G in the set. We then calculated

the matrix with entries DGH = |−→e G−−→e H |, for all G and H in the set. We found
that DGH = 0 only when G = H, thus distinguishing all non-isomorphic graphs.
As an example, the matrix for the set with parameters (26, 10, 3, 4) is

Table 1. The SRG used to test the algorithm. These SRG were obtained from [19]

(n, k, λ, μ) Number of co-parametric SRG
(16, 6, 2, 2) 2
(25, 12, 5, 6) 15
(26, 10, 3, 4) 10
(28, 12, 6, 4) 4
(29, 14, 6, 7) 41
(35, 18, 9, 9) 227
(36, 14, 4, 6) 227
(40, 12, 2, 4) 28
(45, 12, 3, 3) 78
(64, 18, 2, 6) 167
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Fig. 1. Two non-isomorphic SGR (G left, H right) with the parameter set (16, 6, 2, 2)
(The graphs were drawn using Bill Kocay’s “Graphs and Groups” program available
at http://bkocay.cs.umanitoba.ca/G&G/G&G.html)

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4.1314 42.88 26.643 22.906 26.217 45.133 26.114 23.549 23.363
4.1314 0 45.494 25.432 22.308 24.606 51.952 29.343 24.855 23.799
42.88 45.494 0 53.421 55.587 58.849 15.507 96.276 53.686 57.496
26.643 25.432 53.421 0 3.0823 3.8608 53.243 75.141 3.639 3.0694
22.906 22.308 55.587 3.0823 0 2.4684 53.464 68.051 2.4905 1.178
26.217 24.606 58.849 3.8608 2.4684 0 57.211 71.881 3.3889 2.5309
45.133 51.952 15.507 53.243 53.464 57.211 0 94.333 51.902 55.511
26.114 29.343 96.276 75.141 68.051 71.881 94.333 0 71.379 68.362
23.549 24.855 53.686 3.639 2.4905 3.3889 51.902 71.379 0 1.8963
23.363 23.799 57.496 3.0694 1.178 2.5309 55.511 68.362 1.8963 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5 Conclusions

We have reviewed how unitary matrices inducing discrete quantum walks (using
the Grover coin) are constructed. We have shown how their spectra are related to
the spectra of the transition matrix of the analogous classical random walk. We
have looked at the supporting digraph of powers of such unitary matrices. These
are related to the possible paths that a quantum walk can take. The spectra of
the adjacency matrices of these digraphs are able to distinguish between pairs
of non-isomorphic cospectral graphs, the classic examples of which are strongly
regular graphs and certain trees.
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Abstract. We present a direct algorithm that computes a largest com-
mon connected induced subgraph of two given graphs. It is based on an
efficient generation of the common connected induced subgraphs of the
input graphs. Experimental results are provided.

1 Introduction

Graphs are widely used to represent objects in various domains such as chem-
ical information, computer imaging etc [1–p. 527]. Many applications in these
domains necessitate the use of similarity measures which are often based on the
calculation of a largest common subgraph of two graphs [2, 3, 4, 5, 6] .

There are numerous definitions of a largest common subgraph, depending
on the notions of subgraph and size of a graph taken into account. We are
interested here in the case where the considered subgraphs are the connected
induced subgraphs, and where the size of a graph is the number of its vertices.
This notion has been successfully applied in chemistry [7].

Recall that given two graphs G1, G2 and a positive integer k, the problem of
deciding whether there exists a common subgraph of G1 and G2 of size greater
than k is NP-complete [8]. In fact, the problem remains NP-complete if we re-
strict the search to common connected induced subgraphs. However, in practice,
it is useful to define specialized algorithms for this particular case, since they
could be significantly more efficient than a general one. A first algorithm that
computes a largest common connected subgraph of two graphs was presented
by I. Koch in [9]. This algorithm can be straightforwardly adapted to compute
a largest common connected induced subgraph. It reduces the problem to the
search of a largest clique of a compatibility graph associated with the input
graphs. In this paper, we present a direct algorithm based on a procedure that
efficiently generates the common connected induced subgraphs of the two input
graphs. We experimentally compare the two algorithms.

2 Preliminaries

A graph G is denoted by G(V, E) where V is the set of its vertices and E the
set of its edges. The subgraph of G induced by a subset of its vertices, V ′ ⊆ V ,

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 162–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A common subgraph of two graphs

is a graph consisting of V ′ and those edges of V with both vertices in V ′. The
subgraph of G induced by V ′ is denoted by G[V ′]. A graph G′ is an induced
subgraph of G if there exists V ′ ⊆ V such that G[V ′] = G′. In all the paper, we
say subgraph for induced subgraph.

Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there exists a bi-
jection f : V1 −→ V2 such that for every u1, v1 ∈ V1, {u1, v1} ∈ E1 if and only
if {f(u1), f(v1)} ∈ E2; f is called an isomorphism. A common subgraph of G1
and G2 is a set of ordered pairs {(u1, v1), . . . , (uk, vk)} such that the function
f : {u1, . . . , uk} −→ {v1, . . . , vk} defined by f(ui) = vi (1 ≤ i ≤ k) is an
isomorphism between G1[{u1, . . . , uk}] and G2[{v1, . . . , vk}].

Example 1. In Figure 1, G = {(1, a), (2, b), (3, c), (4, d), (5, e), (6, j)} is a common
subgraph of G1 and G2.

A graph G is connected if any two of its vertices are linked by a path in G.
The problem LCCIS (Largest Common Connected Induced Subgraph) is to find
a common connected induced subgraph C of two given graphs, such that the
cardinality of C, |C|, is maximum.

Recall that a tree is a connected graph containing no circuit. The vertices of
a tree will be called nodes. A rooted tree is a tree in which one node, the root,
is distinguished. In a rooted tree, any node of degree one, unless it is the root,
is called a leaf. If {u, v} is an edge of a rooted tree such that u lies on the path
from the root to v, then u is said to be the parent of v and v is a child of u. An
ancestor of u is any node of the path from the root to u. If u is an ancestor of
v, then v is a descendant of u, and we write u ≤ v; if u �= v, we write u < v. It
is convenient to denote a tree T with root r by (T, r).

We present, in Section 5, an algorithm for LCCIS based on an efficient method
for generating the common connected subgraphs of two graphs; this method is
described in Section 4. But before generating the common connected subgraphs
of two graphs, we must be able to simply generate the connected subgraphs of
a graph; Section 3 is devoted to this question.
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3 Connected Subgraphs Generation

We present a structure designed to generate the connected subgraphs of a graph.
Throughout this section, G1(V1, E1) is a fixed graph, and (T, r) is a rooted

tree in which each node, except r, is labelled by an element of {v+ : v ∈
V1} ∪ {v− : v ∈ V1}. The label of a node x, x �= r, is denoted by L(x). A label
of the form v+ (resp. v−) is said to be positive (resp. negative). For each node
x of T , we define PL+(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and L(y) = v+} ;
PL+(x) is the set of vertices of G1 occurring in a positive label of an ancestor of
x. Similarly, we define PL−(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and L(y) = v−},
and PL(x) = PL+(x) ∪ PL−(x) ; PL(x) is the set of vertices of G1 used for
labelling the ancestors of x.

In order to generate the connected subgraphs of G1, we build T in such a
way that for each node x of T , G1[PL+(x)] is connected. The set of vertices of
G1 that may label the children of x is denoted by F (x) and defined as follows.

If PL+(x) �= ∅ then F (x) = {v ∈ V1 : ∃u ∈ PL+(x), {v, u} ∈ E1} \ PL(x),
otherwise F (x) = V1 \ PL(x).

Example 2. In Figure 2, PL+(x) = {a, b}, PL(x) = {a, b, c}, F (x) = {e}.
Remark that, by definition, PL+(r) = ∅, PL(r) = ∅ and F (r) = V1.

Definition 3. A tree of the connected subgraphs (TOCS) of G1 is a rooted tree
(T, r) such that :

1. Every node of T , except r, is labelled by an element of {v+ : v ∈ V1} ∪ {v− :
v ∈ V1}.

2. For every node x of T , if F (x) = ∅, then x is a leaf, otherwise x has two
children respectively labelled by v+ and v−, with v ∈ F (x).

See Figure 2 for an example of a TOCS.
We will now show that the leaves of a TOCS of G1 and the connected sub-

graphs of G1 are in a bijective correspondence. The following proposition is an
immediate consequence of Definition 3.

Proposition 4. Let f1 and f2 be two leaves of a TOCS. If f1 �= f2 then
PL+(f1) �= PL+(f2).

Let V ′ ⊆ V1 and (T, r) be a TOCS of G1. We associate with V ′ the path of T ,
(x0, . . . , xk), defined as follows: x0 = r, xk is a leaf of T , and for all i (0 ≤ i < k),
xi+1 is the child of xi with a positive label v+ if v ∈ V ′, otherwise xi+1 is the
child of xi with a negative label. The leaf xk is denoted by l(V ′).

Example 5. In Figure 2, l({a, b, e}) = l({a, b, e, d}) = f .

Remark 6. Let V ′ ⊆ V1. We have PL+(l(V ′)) ⊆ V ′, PL−(l(V ′)) ∩ V ′ = ∅
and PL+(l(V ′)) = ∅ if and only if V ′ = ∅. Indeed, if PL+(l(V ′)) = ∅, then
F (l(V ′)) = V1 \ PL(l(V ′)), moreover, F (l(V ′)) = ∅ since l(V ′) is a leaf, thus
PL(l(V ′)) = V1, PL−(l(V ′)) = V1, V1 ∩ V ′ = ∅ and consequently V ′ = ∅.
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Fig. 2. A tree of the connected subgraphs of a graph

Proposition 7. Let T be a TOCS of G1.

1. (soundness) For every leaf f of T , G1[PL+(f)] is connected.
2. (completeness) Let V ′ ⊆ V1. If G1[V ′] is connected, then V ′ = PL+(l(V ′)).

Proof. 1. Straightforward consequence of Definition 3.
2. 2. If V ′ = ∅ then PL+(l(V ′)) = ∅ (Remark 6) and V ′ = PL+(l(V ′)).

If V ′ �= ∅, then PL+(l(V ′)) �= ∅ (Remark 6). By definition of l(V ′), we have
PL+(l(V ′)) ⊆ V ′. Let C = V ′ \ PL+(l(V ′)). Suppose C �= ∅. The sets C and
PL+(l(V ′)) form a partition of V ′. By hypothesis, G[V ′] is connected, thus there
exists an edge {u, v} ∈ E1, with u ∈ C and v ∈ PL+(l(V ′)). By definition of
l(V ′), C ∩ PL(l(V ′)) = ∅, therefore u ∈ F (l(V ′)). Now l(V ′) is a leaf of T , thus
F (l(V ′)) = ∅. A contradiction. Finally, C = ∅ and V ′ = PL+(l(V ′)). ��
Example 8. In Figure 2, G1[{a, b, e}] is connected, G1[{a, b, e, d}] is not con-
nected and PL+(f) = {a, b, e}.

It follows from Prop. 4 and Prop. 7 that there exists a bijection from the
leaves of a TOCS of G1 to the connected subgraphs of G1. As a consequence,
the connected subgraphs of G1 can be generated by simply performing a depth
first traversal of a TOCS of G1 [10].

4 Generation of the Common Connected Subgraphs of
Two Graphs

We present an algorithm for generating the common connected subgraphs of two
graphs.
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Throughout this section, G1(V1, E1) and G2(v2, E2) are fixed graphs and T
is a TOCS of G1. For every leaf f of T , our algorithm build simultaneously all
the subgraphs of G2 isomorphic to G1[PL+(f)].

We first define a rooted tree whose leaves are in a bijective correspondence
with the common connected subgraphs of G1 and G2.

Definition 9. Let (T, r) be a TOCS of G1. The tree of the common connected
subgraphs of G1 and G2 (TOCCS) built from T is a rooted tree (T ′, r′) in which
each node,except r′, is labelled by an element of V1×V2∪V1×{”Excluded”}. The
label of a node x′, x′ �= r′, is denoted by L′(x′). Each node x′ of T ′ is associated
with a node of T , called the origin of x′ and denoted by Or(x′). (T ′, r′) and the
function Or are defined by induction as follows:

1. Or(r′) = r.
2. Let x′ be a node of T ′.

(a) If Or(x′) is a leaf of T , then x′ is a leaf of T ′.
(b) Otherwise, Or(x′) has two children y and z respectively labelled by v1+

and v1−, where v1 ∈ V1. Let H(x′) = {v2 ∈ V2 : for any ancestor of
x′ labelled by (u1, u2) with u2 ∈ V2, v2 �= u2 and ({v1, u1} ∈ E1 ⇐⇒
{v2, u2} ∈ E2)}, k = |H(x′)| and w1, . . . , wk denote the elements of
H(x′). Then x′ has k+1 children, y′

1, . . . , y
′
k+1, with L′(y′

i) = (v1, wi) and
Or(y′

i) = y (1 ≤ i ≤ k), L′(y′
k+1) = (v1, ”Excluded”) and Or(y′

k+1) = z.

Example 10. Figure 3 displays a path from the root r′ to a node x′ in a TOCCS
of the graphs G1 and G2. Or(x′) = x, F (x) = {e}, x has two children y and z
with L(y) = e+ and L(z) = e−. H(x′) = {5}, x′ has two children y′ and z′ with
L′(y′) = (e, 5) and L′(z′) = (e, ”Excluded”).

In a TOCCS, the labels of the form (v1, v2), with v2 ∈ V2, are called positive
and the labels of the form (v1, ”Excluded”) are called negative. For every node
x′ of a TOCCS, we define PL′

+(x′) = {(v1, v2) ∈ V1 × V2 : ∃y′, y′ �= r′, y′ ≤
x′ and L′(y′) = (v1, v2)}.

The following proposition is an immediate consequence of Definition 9.

Proposition 11. Let T ′ be a TOCCS of G1 and G2, and f ′
1, f ′

2 two leaves of
T ′. If f ′

1 �= f ′
2 then PL′

+(f ′
1) �= PL′

+(f ′
2).

We now establish the correspondence between the leaves of a TOCCS and
the common connected subgraphs of G1 and G2.

Proposition 12. Let T ′ be a TOCCS of G1 and G2.

1. (soundness) For every leaf f ′ of T ′, PL′
+(f ′) is a common connected sub-

graph of G1 and G2.
2. (completeness) Let G be a common connected subgraph of G1 and G2. There

exists a leaf f ′ of T ′, such that PL′
+(f ′) = G.
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Fig. 3. A tree of the connected subgraphs common to two graphs

Proof (Sketch). 1. Straightforward consequence of Definition 9.
2. Let G = {(u1, v1), . . . , (uk, vk)} be a common connected subgraph of G1 and
G2, ui ∈ V1 and vi ∈ V2 (1 ≤ i ≤ k). Let (T, r) be the TOCS of G1 from
which (T ′, r′) is built. By hypothesis, G1[{u1, . . . , uk}] is connected. According
to Prop. 7, we have PL+(l({u1, . . . , uk})) = {u1, . . . , uk}. Let (x0, . . . , xp) be
the path from r to l({u1, . . . , uk}) in T .

For all i, 1 ≤ i ≤ p, if L(xi) is a negative label, we write σ(i) = ”Excluded”,
otherwise, there exists a unique vertex v ∈ V2 such that (L(xi), v) ∈ G and we
write σ(i) = v.

Since G is a common connected subgraph of G1 and G2, there exists a path
in T ′ (x′

0, . . . , x
′
p) from r′ (r′ = x′

0 ) to a leaf f ′ (f ′ = x′
p) such that L′(x′

i) =
(L(xi), σ(i)) (1 ≤ i ≤ p). We have PL′

+(f ′) = G. ��
It follows from Prop. 11 and Prop. 12 that there exists a bijection from the

the leaves of a TOCCS of two graphs to their common connected subgraphs.
Consequently, we can generate the common connected subgraphs of G1 and G2
by simply performing a depth first traversal of a TOCCS of G1 and G2. Notice
that it is not necessary to compute and store the entire TOCCS. A depth first
traversal only requires to store the path from the root to the node currently
visited.

5 The Algorithm

A first algorithm for solving LCCIS consists in generating the common connected
subgraphs of the two input graphs and returning a largest one. This algorithm



168 B. Cuissart and J.-J. Hébrard

performs a complete traversal of a TOCCS of the input graphs. We will see that,
in fact, parts of the TOCCS may be ignored.

Throughout this section, G1(V1, E1) and G2(V2, E2) are fixed graphs, (T, r)
is a TOCS of G1, and (T ′, r′) is a TOCCS of G1 and G2 built from (T, r).
Recall that for every node x of T , PL−(x) = {v ∈ V1 : ∃y, y �= r, y ≤ x and
L(y) = v−}. For each node x′ of T ′, we define PL′

−(x′) = {(v1, ”Excluded”) :
∃y′, y′ �= r′, y′ ≤ x′ and L′(y′) = (v1, ”Excluded”)}. The following propositions
allow us not to entirely examine the TOCCS explored by the algorithm.

Proposition 13. Let m ≥ 0 be an integer and x′ a node of T ′. If |V1| −
|PL′

−(x′)| ≤ m, then |PL′
+(y′)| ≤ m, for every descendant y′ of x′.

Remark that |V1|−|PL′
−(x′)| is the number of vertices of V1 not yet excluded,

when x′ is visited. Suppose the search has already discovered a common subgraph
of size m. If |V1| − |PL′

−(x′)| ≤ m, then it is useless to explore the principal
subtree of T ′ at x′, since, according to Prop. 13, we would not find any common
subgraph of size greater than m.

Proposition 14. Let x′ be a node of T ′ such that PL′
+(x′) �= ∅, and f ′

1 a leaf
of T ′ descending from x′ (x′ ≤ f ′

1). If for every y′ such that x′ < y′ ≤ f ′
1, L′(y′)

is positive, then, for every leaf f ′
2 descending from x′, we have |PL′

+(f ′
2)| ≤

|PL′
+(f1)|.

Proof (Sketch). Let x = Or(x′), f1 = Or(f ′
1) and f2 = Or(f ′

2) (Definition 9).
G1[PL+(f1)] is the largest connected subgraph of G1 that contains the vertices of
PL+(x) and does not contain the vertices of PL−(x). By hypothesis, PL′

+(x′) �=
∅, thus PL+(x) �= ∅. Consequently, G1[PL+(f2)] contains the vertices of PL+(x)
and does not contain the vertices of PL−(x). Hence, PL+(f2) ⊆ PL+(f1) and
|PL′

+(f ′
2)| ≤ |PL′

+(f ′
1)| .��

Let x′ be a node of T ′ such that PL′
+(x′) �= ∅. After having explored a path

p from x′ to a leaf f ′
1, such that p only contains nodes positively labelled (except

x′ possibly), it is useless to explore the other paths beginning at x′. Indeed we
are sure, from Prop. 14, that these paths do not lead to any common subgraph
larger than the one given by PL′

+(f ′
1).

Finally, our algorithm partially explores a TOCCS in a depth first manner,
ignoring parts of it that cannot provide a common subgraph larger than the
current largest one already found.

6 Experimental Results

It is essential to characterize graph matching algorithms by their performances
[11, 12]. We experimentally compared our algorithm (T-TOCCS) with the algo-
rithm based on the method proposed by I. Koch (C-CLIQUE) [9].

Material. The experiments were realized on a computer with 1 GB of memory
and the AMD Athlon processor (2,2 GHz). We implemented both algorithms
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Table 1. Experimental results

Randomly Connected Graphs, fixed density.
S MC EC MT ET S MC EC MT ET

Density =0.1 Density =0.2
21 5.235 3.37 0.462 0.345 16 1.259 0.133 0.172 0.0336
22 6.366 2.007 0.469 0.22 17 3.049 0.369 0.412 0.08
23 19.604 5.023 1.4 0.602 18 7.949 0.995 1.289 0.318
24 56.197 27.122 4.405 2.342 19 18.567 1.953 3.64 0.584
25 119 70.976 8.628 6.663 20 45.966 4.805 9.375 1.765
26 286.748 105.66 21.162 9.521 21 115.653 11.851 22.631 6.003

Density =0.5 Density =0.85
14 1.091 0.0332 0.272 0.048 10 0.7 0.07 0.017 0.0169
15 2.656 0.086 0.601 0.127 11 4.61 0.982 0.101 0.0712
16 6.049 0.228 1.397 0.052 12 14.658 1.974 0.17 0.16
17 13.821 0.451 3.848 0.394 13 62.386 14.122 0.913 0.826
18 31.078 0.95 9.718 1.6 14 242.79 36.954 3.858 2.966

Randomly Connected Graphs, fixed size.
D MC EC MT ET D MC EC MT ET

Size = 18 Size = 22
0.2 5.927 0.739 0.763 0.141 0.1 6.366 2.007 0.469 0.220
0.3 16.68 1.323 4.29 0.346 0.15 75.005 14.696 8.365 3.599
0.4 19.82 1.745 5.92 0.476 0.2 264.17 22.162 30.29 7.871
0.5 31.078 0.950 9.718 1.600

Irregular 2d Meshes.
D MC EC MT ET D MC EC MT ET

Size = 9 Size = 16
0.333 0 0 0 0 0.208 1.394 0.092 0.008 0.0064
0.417 0.009 0.0018 0 0 0.3 3.119 0.229 0.649 0.081
0.528 0.01 0 0 0 0.4 4.418 0.261 1.337 0.113
0.611 0.01 0 0 0 0.5 6.048 0.248 1.427 0.13
0.722 0.03 0 0 0 0.6 12.55 0.898 1.702 0.267
0.833 0.125 0.019 0 0 0.7 52.403 6.697 2.842 1.298
0.917 0.716 0.066 0.004 0.0064 0.75 127.571 12.325 4.995 1.836
1 13.173 0.0042 0 0

S : Size of the input graphs, D : Density of the input graphs,

C-CLIQUE :
– MC : Mean duration of the calculus (in seconds).
– EC : Standard deviation.

T-TOCCS :
– MT : Mean duration of the calculus (in seconds).
– ET : Standard deviation.
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in C, and compiled the code with the GNU gcc 3.3 compiler with appropriate
optimizations.

The algorithms were tested on two kinds of graphs : randomly connected
graphs and irregular 2D meshes. These graphs are described by M. De Santo et
al. in [13, 14]. Notice that they are always connected. In a randomly connected
graph, the probability of an edge connecting two vertices is independant on the
vertices themselves. We adopted the model proposed in [15] to generate our
instances. Since it is generally agreed that irregular 2D meshes represent a worst
case for general graph matching algorithms [15], we also considered these graphs.

Results. We have compared the performances of the two algorithms on the same
instances. The results are displayed on three tables (see Table 1). The first two
tables concern the results obtained with randomly connected graphs, the third
table is dedicated to irregular 2D meshes. A cell of these tables corresponds to
a measure on a sample of ten instances. For example, the cell at the top left
corner of the first table indicates that C-CLIQUE has taken on average 5.235
seconds to find a LCCIS between two randomly connected graphs of size 21 and
of density 0.1. For each series, the measures were stopped as soon as the time
required to solve one instance exceeded 500 seconds.

Discussion. The examination of the tables shows that T-TOCCS operates faster
than C-CLIQUE on these instances.

When the input graphs are randomly connected graphs of density η = 0.5,
T-TOCCS solves the problem 3 times faster than C-CLIQUE. This difference
increases as the density of the input graphs moves away from 0.5. T-TOCCS
operates on average 10 times faster than C-CLIQUE when the density is equal
to 0.1. It operates 40 times faster when the input graphs have high density
(D = 0.85).

The observations are similar for the 2D meshes. When the density of the
meshes is close to 0.5, T-TOCCS operates about 3 times faster than C-CLIQUE.
This ratio rapidly increases to reach 170 when the input graphs are the regular
2D meshes with 16 vertices. On the other side, this ratio reaches 25 when the
input graphs have a density of 0.75.
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Abstract. Graph matching is often used for image recognition. Differ-
ent kinds of graph matchings have been proposed such as (sub)graph
isomorphism or error-tolerant graph matching, giving rise to different
graph similarity measures. A first goal of this paper is to show that these
different measures can be viewed as special cases of a generic similarity
measure introduced in [8]. This generic similarity measure is based on a
non-bijective graph matching (like [4] and [2]) so that it is well suited
to image recognition. In particular, over/under-segmentation problems
can be handled by linking one vertex to a set of vertices. In a second
part, we address the problem of computing this measure and we describe
two algorithms: a greedy algorithm, that quickly computes sub-optimal
solutions, and a reactive Tabu search algorithm, that may improve these
solutions. Some experimental results are given.

1 Introduction

Graphs are often used to model structured objects. In particular, graphs may
be used for scene representation [2]: vertices represent scene regions, while edges
represent binary relations between regions. In this context, image recognition and
classification involves comparing graphs, i.e., matching graphs to identify their
common features [9]. This may be done by looking for an exact graph or subgraph
isomorphism in order to show graph equivalence or inclusion. However, images
are often corrupted by noise and distorsions and the assumption of the existence
of an isomorphism is usually too strong. As a consequence, error-tolerant graph
matchings such as maximum common subgraph and graph edit distance have
been proposed [5, 9]. Such matchings drop the condition that the mapping must
preserve all vertices and edges: the goal is to find a ”best” mapping, i.e., one
which preserves a maximum number of vertices and edges.

Most recently, three different papers proposed to go one step further by in-
troducing multivalent matchings, where a vertex in one graph may be matched
with a set of vertices of the other graph:

– In [8], graphs are used to model design objects in a computer-aided design
application. In this context, vertices are used to represent object components
and one single component of an object may play the same role than a set

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 172–182, 2005.
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of components of another object, depending of the granularity of object
description. Therefore, the authors introduce a similarity measure based on
multivalent mappings so that one vertex in a graph may be associated with
a set of vertices of the other graph.

– In [4], graph matching is used for model-based pattern recognition of brain
images. In this application, the assumption of a bijection between regions of
the model and the image is too strong: model has a schematic aspect easy to
segment while image is noised and usually over-segmented. Therefore, scene
recognition is better expressed as a multivalent matching problem where a
set of vertices of the scene may be linked to a same vertex of the model.

– In [2], a new graph edit distance is proposed, that introduces two new edit
operations —vertex splitting and merging— in order to handle the fact that
images may be over- or under- segmented.

Motivation and outline. A first goal of this paper is to ”point out” the similarities
between these three recent kinds of graph matchings. Another goal is to propose
practical algorithms for multivalent graph matchings. Section 2 briefly introduces
the graph similarity measure of [8]. Section 3 compares this measure with other
graph matchings. Section 4 addresses the problem of computing this measure:
we first propose a greedy algorithm that quickly computes an approximation of
the similarity and then a reactive Tabu search approach, that may improve the
computed approximation. Section 5 presents some experimental results.

2 A Generic Similarity Measure for Multi- abeled
Graphs

A directed graph is defined by a couple G = (V, E), where V is a finite set of
vertices and E ⊆ V × V is a set of directed edges. Vertices and edges may be
associated with labels that describe their properties. Given a set LV of vertex
labels and a set LE of edge labels, a multi-labeled graph is defined by a triple
G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V ×LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,
– rE ⊆ V × V ×LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
E of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

We shall call the tuples of rV and rE the vertex and edge features of G. The
set descr(G) = rV ∪ rE of all vertex and edge features of a graph G completely
describes the graph G.

We now briefly describe the graph similarity measure introduced in [8]; we
refer the reader to [8] for more details. This similarity measure is defined for two
multi-labeled graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, defined over the
same sets of vertex and edge labels LV and LE , and such that V ∩ V ′ = ∅.

l
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The first step for measuring graph similarity is to map vertices. The mapping
considered here is multivalent, i.e., each vertex of one graph is mapped with a
possibly empty set of vertices of the other graph. More formally, a multivalent
mapping of the two graphs G and G′ is a set m ⊆ V ×V ′ which contains every
couple (v, v′) ∈ V × V ′ such that vertex v is mapped with vertex v′.

Once a multivalent mapping is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this mapping. This
set contains all the features from both G and G′ whose vertices (resp. edges)
are matched by m to at least one vertex (resp. edge) that has the same feature.
More formally, the set of common features descr(G)�m descr(G′), with respect
to a mapping m, is defined as follows:

descr(G) 	m descr(G′) =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m, (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m, ∃(vj , v

′
j) ∈ m (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ | ∃(vi, v

′
i) ∈ m, ∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent mapping m, we also have to identify the set of split vertices,
i.e., the set of vertices that are mapped to more than one vertex, each split
vertex v being associated with the set sv of its mapped vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of G and G′ with respect to a mapping m is then defined by:

simm(G, G′) =
f(descr(G) 	m descr(G′)) − g(splits(m))

f(descr(G) ∪ descr(G′))
(1)

where f and g are two functions that are introduced to weight features and splits,
depending on the considered application. For example, if f is the cardinality
function and g is the null function, then the similarity is proportional to the
number of common features with respect to the total number of features. If g
is the cardinality function, instead of the null function, then the similarity is
decreased proportionally to the number of split vertices.

Finally, the maximal similarity sim(G, G′) of two graphs G and G′ is the
greatest similarity with respect to all possible mappings:

sim(G, G′) = max
m⊆V ×V ′

f(descr(G) 	m descr(G′)) − g(splits(m))
f(descr(G) ∪ descr(G′))

(2)

3 Generic Graph Similarity and Image Recognition

The measure of similarity described in section 2 has been first proposed for com-
paring objects in a computer-aided design application. However, this measure
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is generic and it may be customized by properly defining functions f and g. In
this section, we show how this measure relates to other graph matchings used
in image recognition. These matchings are often defined for non labelled graphs.
Hence we shall suppose that a non labelled graph is a particular labelled graph
such that all vertices have a same label lv and all edges have a same label le.

Graph isomorphism. The graph isomorphism problem between two graphs G=
(V, E) and G′=(V ′, E′) such that |V |=|V ′| consists in finding a bijective function
φ : V → V ′ such that (v1, v2) ∈ E if and only if (φ(v1), φ(v2)) ∈ E′.

If functions f and g of formula (2) are defined as cardinality functions, then
sim(G, G′)=1 if and only if there exists a mapping m such that descr(G) �m

descr(G′)=descr(G)∪descr(G′) and splits(m)=∅, i.e., sim(G, G′)=1 if and only
if G and G′ are isomorphic.

Partial subgraph isomorphism. The partial subgraph isomorphism problem be-
tween two graphs G=(V, E) and G′=(V ′, E′) such that |V | ≤ |V ′| consists in find-
ing an injective function φ :V → V ′ such that (v1, v2)∈E ⇒ (φ(v1), φ(v2))∈E′.

Let us define function g of formula (2) as the cardinality function and function
f as a weighted sum where the weight of the features of G (resp. G′) is 1 (resp.
0). In this case, sim(G, G′)=1 if and only if there exists a mapping m such that
descr(G) ⊆ descr(G)�m descr(G′) (as f(descr(G)∪descr(G′))=|descr(G)|) and
splits(m)=∅, i.e., sim(G, G′)=1 if and only if there exists a partial subgraph
isomorphism.

Subgraph isomorphism. The subgraph isomorphism problem is a special case
of partial subgraph isomorphism: it adds the constraint that for each couple
(v1, v2) ∈ V 2, if (v1, v2) is not an edge of G, then (φ(v1), φ(v2)) must neither be
an edge of G′.

To check for subgraph isomorphism, we have to add “not-an-edge” labels to
all couples of vertices that are not edges, and then to check that all “not-an-edge”
labels of G are preserved by the mapping. More formally, given a graph G=(V, E),
we define the labelled graph Glabel=(V, rV , rE) such that rV ={(v, lv)|v ∈ V }
and rE={(u, v, le)|(u, v) ∈ E} ∪ {(u, v, lnotE)|(u, v) ∈ V × V − E}. Let us then
define functions f and g of formula (2) as done for the partial subgraph. In this
case, sim(Glabel, G

′
label)=1 if and only if there exists a subgraph isomorphism.

Maximum common partial subgraph (mcps). The mcps of two graphs G and G′

is the largest graph (with respect to the number of vertices and edges) which is
a partial subgraph of both G and G′.

Let us define function f of formula (2) as the cardinality function, and func-
tion g so that split vertices are forbidden (i.e., g(S)=+∞ if S �= ∅ and g(∅)=0).
In this case, the mapping m that maximizes formula (1) is the mapping which
maximizes the number of common features in descr(G)�m descr(G′), while for-
bidding split vertices, and therefore it corresponds to a mcps.

These definitions can be extended to the problem of finding the maximum
common subgraph (mcs) of two graphs, i.e., the problem of finding the largest
non partial subgraph. This is done by considering labelled graphs that associate
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“not-an-edge” labels to all couples of vertices which are not edges, like for the
subgraph isomorphism problem. The mcs of two graphs is used in [7, 6, 5] to
define the similarity of two graphs as simmcs(G, G′)= |mcs(G,G′)|

max (|G|,|G′|) . One can ap-
propriately define functions f and g in such a way that the mapping which max-
imizes formula (1) corresponds to the mapping which maximizes simmcs(G, G′).

Graph edit distance (ged). The ged of two graphs G and G′ is the minimum cost
set of weighted operations needed to transform G into G′. Considered opera-
tions are insertions, substitutions, and deletions of vertices and edges. [5] shows
that, when considering appropriate weight definitions, ged is closely related to
the maximum common subgraph, and therefore it is also closely related to the
similarity measure of formula (2).

If we consider non labelled graphs (so that one only perform insertion and
deletion operations) then, given a mapping m, each vertex or edge feature con-
tained in descr(G)−(descr(G)�m descr(G′)) (resp. in descr(G′)−(descr(G)�m

descr(G′))) corresponds to a vertex or an edge deletion (resp. insertion). Let us
then define function f as a weighted sum where weights are defined by operation
costs. In this case, the mapping m which maximizes formula (1) gives the set of
insertion and deletion operations which minimizes the ged.

If we consider labelled graphs (where each vertex and edge is associated with
a single label), then substitution operations may be performed to change vertex
or edge labels. If two vertices (or edges) are mapped by m but have a different
label in G and G′, then these labels will not belong to the set of common features
descr(G) �m descr(G′). Hence, one can also define a function f such that the
mapping m which maximizes formula (1) gives the set of operations, including
substitution operations, which minimizes the ged.

Extended ged. In order to compare over- and under-segmented images, [2] pro-
poses to extend ged with two new operations: vertex splitting —to split one
vertex of G into several vertices of G′— and vertex merging —to merge several
vertices of G into one single vertex of G′.

Given a mapping m, the set of couples (v, s′
v)∈splits(m) such that v∈G

corresponds to the set of splitting operations whereas the set of couples (v′, sv)∈
splits(m) such that v′ ∈ G′ corresponds to the set of merging operations. Hence,
if function g of formula (2) is defined as a weighted sum, where weights corre-
spond to splitting and merging costs, and if f is defined as done for non ex-
tended ged, then the mapping which maximizes formula (1) corresponds to the
extended ged.

Non bijective graph matching problem. This problem is introduced in [4] to find
the best matching between models and over-segmented images of brains. Given a
model graph G=(V, E) and an image graph G′=(V ′, E′), a matching is defined as
a function φ : V → ℘(V ′) which associates to each vertex of the model graph G a
non empty set of vertices of G′, and such that (i) each vertex of the image graph
G′ is associated to exactly one vertex of the model graph G, (ii) some couples
(v, v′) ∈ V × V ′ are forbidden so that v′ must not belong to φ(v), and (iii) the
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subgraph induced by every set φ(v) must be connected. A weight sv(vi, v
′
i) (resp.

se(ei, e
′
i)) is associated with each couple of vertices (vi, v

′
i) ∈ V × V ′ (resp. of

edges (ei, e
′
i) ∈ E × E′). The goal is to find the matching which maximizes a

function depending on these weights of matched vertices and edges.
One can define functions f and g so that the mapping which maximizes

formula (1) corresponds to the best matching as defined in [4]. To handle the
fact that couples of vertices and edges are associated with weights, and also that
condition (ii) is verified, we have to associate labels to vertices and edges in such
a way that the label (v, v′) (resp. (e, e′)) belongs to descr(G)�m descr(G′) if and
only if v is mapped to v′ (resp. e to e′). We can then define f as a weighted sum
where a label (v, v′) (resp. (e, e′)) can be weighted with respect to sv(v, v′) (resp.
se(e, e′)) or with negative infinite weight if mapping v to v′ is forbidden. Function
g is defined in such a way that mappings that do not verify conditions (i) or (iii)
are forbidden, i.e., g returns an infinite value when when image vertices are split
or merged vertices are not connected.

Discussion

The graph similarity measures proposed in [2] and [4] are based on multivalent
mappings (i.e., one vertex may be mapped to several vertices). Both measures are
used for image recognition. Indeed, images are often over- or under-segmented
so that one has to associate one (under-)segmented region of an image to several
(over-)segmented regions of another image.

However, the two similarity measures of [2] and [4] are specific to the ad-
dressed problem. In particular, [4] is used for matching brain images to models,
and in this context they added specific constraints (e.g., all model vertices must
be mapped and each image vertex must be mapped to exactly one model vertex).

The similarity measure proposed in [8] is also based on multivalent mappings,
but it is more generic, in the sense that specific constraints or preferences can be
expressed thanks to functions f and g. The advantage of such a generic measure,
where application-dependent constraints are specified via the two parameters f
and g, is that algorithms for computing this measure can be used for different
applications. As a counterpart, these algorithms may be less efficient than tailor-
made programs, that have been designed for a particular application so that they
can exploit specific knowledge to speed-up the solution process.

Moreover, the similarity measure proposed in [8] is defined for multi-labelled
graphs, such that each vertex and edge can be associated with a set of labels that
describe its properties. Such a multi-labelling could be very useful to describe im-
ages more accurately. For example, vertices could be labelled by colours, shapes,
or sizes of corresponding regions, while edges could be labelled by distances,
relative positions, or relative sizes of corresponding couples of regions.

4 Algorithms for Measuring Graph Similarity

All matching problems described in section 3 are NP-complete or NP-hard prob-
lems, except for graph isomorphism, the complexity of which is not exactly
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stated, and for particular graphs (such as trees or planar graphs) for which some
problems are polynomial ([1, 13, 15]).

Complete algorithms have been proposed for computing the mapping which
maximizes formula (1) in [8] and for computing the cheapest set of edit opera-
tions in [2]. This kind of algorithms, based on an exhaustive exploration of the
search space combined with pruning techniques, guarantees solution optimality.
However, these algorithms are limited to very small graphs.

Therefore, incomplete algorithms, that do not guarantee optimality but have
a polynomial time complexity, appear to be good alternatives. In particular,
[4] proposes a randomized construction algorithm —that quickly computes a
set of possible non-bijective graph matchings— and a local search algorithm
that improves these matchings until a locally optimal point is reached. These
algorithms are dedicated to the particular application of matching models with
real images.

In this section, we describe three incomplete algorithms —a greedy one, a
tabu search one and a reactive tabu search one— for measuring the similarity of
two labelled graphs as defined by formula (2). These algorithms are generic in
the sense that they are parameterized by the two functions f and g that contain
domain-dependant knowledge.

Greedy algorithm. This algorithm has been first proposed in [8]. We briefly de-
scribe it because it is used as a starting point of tabu search algorithms. More
information can be found in [8].

The algorithm starts from the empty mapping m = ∅, and iteratively adds
to m couples of vertices chosen within the set of candidate couples cand =
V ×V ′−m. At each step, the couple to be added is chosen in a greedy way: we first
select from cand the subset of couples that most increase the similarity as defined
by formula (2). This subset often contains more than one candidate. To break ties
between them, we look ahead the potentiality of each candidate (v, v′) by taking
into account the features that are shared by edges starting from (resp. ending to)
both v and v′ and that are not already in descr(G)�m∪{(v,v′)} descr(G′). If there
are still more than one couple which maximizes these looked-ahead common edge
features, then one couple is randomly chosen. This greedy addition of couples to
m is iterated until m is locally optimal, i.e., until no more couple addition can
increase the similarity.

This greedy algorithm has a polynomial time complexity of O((|V | × |V ′|)2),
provided that the computation of the f and g functions have linear time com-
plexities with respect to the size of the mapping. As a counterpart of this rather
low complexity, this algorithm never backtracks and is not complete. Hence, it
may not find the best mapping; moreover, even if it actually finds the best map-
ping, it cannot be used to prove its optimality. Note however that, since this
algorithm is not deterministic, we may run it several times and keep the best
found mapping.

Local search. The greedy algorithm returns a ”locally optimal” mapping in the
sense that adding or removing one couple of vertices to this mapping cannot
improve it. However, it may be possible to improve it by adding and/or removing
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more than one couple to this mapping. A local search [12, 14] tries to improve a
solution by locally exploring its neighborhood: the neighbours of a mapping m
are the mappings which can be obtained by adding or removing one couple of
vertices to m:

∀m ∈ ℘(V × V ′), neighbourhood(m) = {m ∪ {(v, v′)}|(v, v′) ∈ (V × V ′)−m}
∪ {m− {(v, v′)}|(v, v′) ∈ m}

From a good initial mapping, computed by the greedy algorithm, the search
space is explored from neighbour to neighbour until the optimal solution is found
(when the optimal value is known) or until a maximum number of moves have
been performed. A heuristic selects the next neighbour to move on at each step.

Tabu meta-heuristic. Tabu search [12, 10, 16] is one of the best known heuristic
to choose the next neighbour to move on. At each step, one chooses the best
neighbour with respect to the same criteria than for the greedy algorithm. Note
that this best neighbour may be worse than the current mapping if it is locally
optimal. Hence, to avoid to stay around locally optimal mappings by always
performing the same moves, a Tabu list is used. This list has a length k and
memorizes the last k moves (i.e., the last k added/removed couples) in order to
forbid backward moves (i.e., to remove/add a couple recently added/removed).
An exception named ”aspiration” is added: if a forbidden move reaches a bet-
ter mapping than the best known mapping, the move is always done. Figure 1
describes the Tabu algorithm for computing formula (2).

Reactive tabu search. The length k of the tabu list is a critical parameter that is
hard to set: if the list is too long, search diversification is too strong so that the
algorithm converges too slowly; if the list is too short, intensification is too strong
so that the algorithm may be stuck around local maxima and fail in improving
the current solution. To solve this parameter tuning problem, [3] introduces
reactive Tabu search where the length of the Tabu list is dynamically adapted

fonction Tabu(G = 〈V, rV , rE〉, G′ = 〈V ′, rV ′ , rE′〉, k, optBound, maxMoves)
return a mapping m ⊆ V × V ′

m ← Greedy(G, G′) ; bestm ← m ; nbMoves ← 0
while simm(G, G′) < optBound and nbMoves < maxMoves do

cand ← {m′ ∈ neighbourhood(m)/simm′(G, G′) > simbestm(G, G′)}
if cand = ∅ then/* no aspiration */

cand ← {m′ ∈ neighbourhood(m)/isNotTabu(m, m′, k)
end if
cand ← {m′ ∈ cand/m′ is maximal wrt formula (2) and look-ahead}
choose randomly m′ ∈ cand
makeTabu(m, m′, k) ; m ← m′ ; nbMoves ← nbMoves + 1
if simm(G, G′) > simbestm(G, G′) then bestm ← m end if

end while
return bestm

Fig. 1. Tabu algorithm
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during the search. To make the Tabu algorithm reactive, one must evaluate the
need of diversification of the search. When the same mapping is explored twice,
the search must be diversified. In order to detect such redundancies, a hashing
key is memorized for each explored mapping. When a collision occurs in the
hash table, the list length is increased. On the contrary, when there is no collision
during a fixed number of moves, thus indicating that search is diversified enough,
one can reduce the list length. Hashing codes are incrementally computed so,
this method has a negligible added cost.

5 Experimental Results

5.1 Experimental Settings

We now experimentally compare the three previously introduced algorithms:
iterated greedy (which repeatedly computes 500 mappings with the greedy al-
gorithm, and return the best one), Tabu search and reactive Tabu search. Non
reactive version of Tabu search obtains its best average results when the length
k of the Tabu list is between 10 and 20. Note that small variations on this length
may have an important influence on the results and that the best setting for k
is different from one instance to another. Best reactive Tabu search parameters
are 10 (resp. 50) for the minimal (resp. maximal) length of the list, 15 for the
size of extension and shortening of the list and 1000 moves for the frequency of
reducing of the list. By opposition to (non reactive) Tabu search, these parame-
ter settings are more ”robust” in the sense that small variations on them do not
significantly change performances.

5.2 Graph and Subgraph Isomorphism Problems

We first have done a set of experiments on graph and subgraph isomorphism
problems coming from [11]. The iterated greedy algorithm solves 80% of hard
graph isomorphism problem instances (regular graphs having 100 vertices, see
[11]) in less than 10 seconds (on a Pentium IV 2Ghz, 512Mo of RAM) ; within the
same time limit, reactive local search solves 100% of these problems. Moreover,
reactive local search can solve 100% of any kind of graph isomorphism problems
on graphs having up to 200 vertices in less than 20 seconds.

Subgraph isomorphim problems are much harder: within a limit of 200s, reac-
tive Tabu search solves 66% of subgraph isomorphism problems on graphs with
100 vertices and iterated greedy algorithms only 4,4%. These rather poor results
can be explained by the fact that our algorithms do not use any kind of filtering
techniques and potentialy explore all kinds of mappings, even multivalent ones.

5.3 Multivalent Mapping Problems

In order to compare our three algorithms on multivalent mapping problems, we
have used a random graph generator to generate ”similar” pairs of graphs: it
randomly generates a first graph and applies some vertex splitting/merging and
some edge and vertex insertion/suppression to build a second graph which is
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similar to the first one. From the set of transformations, a minimal bound of the
similarity is computed. It is used to evaluate our algorithms, by counting the
number of times they succeeded in reaching this bound (or an higher one).

When graph components have many different labels, the best mapping is
trivially found as nearly all vertices/edges have different labels. Therefore, to
obtain harder instances, we have generated 100 graphs such that all vertices and
edges have the same label. These graphs have between 80 and 100 vertices and
between 200 and 360 edges. The second graph is obtained by doing 5 vertex
merging/splitting and 10 edge or vertex insertion/suppression. Functions f and
g of formula (2) are defined as cardinality functions.
Comparative results. Each algorithm has been run 200 times on each of the
100 generated problems. 51 problems appeared to be “easy” ones as they were
always solved by the iterated greedy algorithm. Over the 49 remaining “harder”
problems, that could not be solved by the iterated greedy algorithm, 35 were
easily —and always— solved, both by reactive and non reactive Tabu search (in
less than 500 moves, corresponding to less than 4 seconds). The 14 last instances
appeared to be really hard ones, that needed more than 25, 000 moves to be
solved. For these 14 instances, (non reactive) Tabu search succeeded in finding a
solution for 64% of the runs whereas reactive Tabu search succeeded for 79% of
the runs. Furthermore, reactive Tabu search appeared to be more robust than
its non reactive version in the sense that parameter settings influence less the
results. So, the reactive Tabu search is more efficient and easier to tune than the
non reactive version.

6 Conclusion

We have shown that the graph similarity measure of [8] is more generic than
other graph similarity measures used in image recognition [6, 9]. It is based on
multivalent graph matching so that over- and under- segmentation problems [2, 4]
can be overrided by linking one vertex of a graph to a set of vertices of the other
graph. We have given three algorithms with a polynomial complexity: a greedy
algorithm, a local search based on Tabu meta-heuristic and an improved version
of this search named ”reactive Tabu search”. These algorithms can compute
a similarity measure based on multivalent mapping of two graphs having 100
vertices in a reasonable amount of time.
Further works. We have shown that the similarity measure proposed in [8] is
generic in the sense that it can be used to formulate many graph similarity
measure. Next step will be to test our algorithms on extended graph edit dis-
tance problems [2] and on non-bijective graph matching problems [4], in order
to evaluate the efficiency of this formulation in a pratical point of view, and the
usefulness of our algorithm in image recognition.

Our generic similarity measure associated with the expressive power of multi-
labelled graphs could be used to define new powerful image similarity measures
and, therefore, we plan to evaluate them in the field of image recognition and
for content-based image querying system.
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Tree Matching Applied to Vascular System
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Abstract. In this paper, we propose an original tree matching algorithm
for intra-patient hepatic vascular system registration. The vascular sys-
tems are segmented from CT-Scan images acquired at different time,
and then modeled as trees. The goal of this algorithm is to find common
bifurcations (nodes) and vessels (edges) in both trees.

Starting from the tree root, edges and nodes are iteratively matched.
The algorithm works on a set of matching hypotheses which is updated
to keep best matches. It is robust against topological modification, as
the segmentation process can fail to detect some branches.

Finally, this algorithm is validated on the Visible Human with syn-
thetic deformations thanks to the simulator prototype developed at the
INRIA which provides realistic deformations for liver and its vascular
network.

1 Introduction

1.1 Motivations

Matching and registration are fields in medical imaging with a great impact on
visualization, diagnosis and surgery planning. In this paper, we focus on intra-
patient follow-up of the hepatic vascular system between two acquisitions. We
propose an automatic method which allows to match vessels and bifurcations.
This approach is motivated by the fact that the liver is a very high deformable
organ. The most reliable landmarks to estimate deformations sustained by the
liver are provided by its vascular network.

The principal application of this work is to estimate the deformation of liver
between two different times and to make a follow-up of tumors (see previous
work [2]).

1.2 Previous Works

Related works propose algorithms to match and/or register vascular systems
(brain, liver and, in a similar manner, lung airway). Generally, veins are modeled
as graphs computed from segmented images and skeletons [8]. Some authors use
some tree structure notions in their algorithms to register a tree with an image [1]
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c© Springer-Verlag Berlin Heidelberg 2005



184 A. Charnoz et al.

or two trees [3]. Other approaches really match structures (nodes and vessels),
but use general graph matching methods [9, 4, 5] or too specific methods like
subtree isomorphism [7]. To summarize, the vascular tree matching problem is
more specific than graph matching because the structure is simpler. On the other
hand, it cannot be considered as a subtree isomorphism problem because of the
segmentation problems. As a matter of fact, the segmentation process can miss
some branches. This implies a (virtual) pruning on both trees, and thus an edge
in a tree could be represented by several successive edges on the other tree.

In our previous work [2], vascular systems are modeled as a tree and then
graph vertices have been matched together without taking into account possible
segmentation errors. The previous algorithm works well on most branches but
suffers from a lack of robustness in complex (but real) cases.

1.3 Proposal

The new algorithm proposed in this paper manages a matching hypotheses graph
(MHG) where each matching hypothesis is associated with a cost. The MHG is
updated as the matched branches set grow. This global approach allows us to find
the best match (which minimizes a cost function) and not only a local solution.

The remainder of this paper is organized as follows. The first part presents
the tree matching. We describe the generation of hypotheses and their associated
cost functions. We explain how we update the MHG by keeping the best potential
solutions.

The second part shows results and the algorithm’s efficiency. We explain the
validation protocol and we discuss tests for virtual and real patient. We finish
with a discussion on future possible improvements.

2 Tree Matching

The proposed algorithm is a tree matching. Indeed, trees are a representation of
skeletons computed from segmented vascular systems. The orientation symbol-
izes blood circulation flow. Nodes represent bifurcations and edges correspond
to vessels between two bifurcations. Vessels has some geometric attributes: 3D
positions, radius, vessel path.

Our goal is to find common bifurcations in both trees. Trees represent the
same vascular system. However, their topology differ due to segmentation errors
as well as 3D positions due to deformations applied on them. Furthermore, we
assume that the tree roots are known (detection of vascular system entrance)
and that the tree deformations are small (standard case).

In the next sections, we explain this tree matching. After introducing some
notations, we see the framework used to generate all matching hypotheses. More
specifically, we detail the two steps of the algorithm. Then, we focus on the
selection of the best matching hypothesis.
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2.1 Notations

We work on a tree noted T = (V,E, r) where V represents the set of vertices,
E ⊂ V ×V the set of edges and r the root. For a node u in a tree T , T (u) denotes
the subtree of T induced from u. For a vertex v, sons(v) denotes the set of their
child vertices, and father(v) its father vertex. For a vertex v, out(v) denotes the
set of out-edges of v, and in(v) its in-edge. For an oriented edge e = (v, u), we
define src(e) = v and tgt(e) = u. For two vertices v, w ∈ V , P (v, w) is the unique
path in T linking v to w. A path is a subtree of T . Let e an edge and its target
vertex v, and let DVL(e) = {u,∀u ∈ vertices of T (v), ‖P (v, u)‖ ≤ L} denote the
descendant vertex set composed of L-first depth level vertices in subtree induced
from e. Let a vertex v, T+(v) denotes the subtree T (v) where father(v) is added
to vertex set and in(v) to the edge set.

We introduce also some notations on functions. Let A and B two set with
same size. Let BA,B the bijection class from A to B. Let Ck

A,B the function class
which defines a subset of k elements of A and subset of k elements of B. If
h ∈ Ck

A,B ,then h(A) and h(B) denotes these subsets.

2.2 Framework of the Algorithm

Our algorithm searches for the best tree matching between path of T1 = (V1, E1, r1)
and T2 = (V2, E2, r2) starting from roots (r1 match with r2). This algorithm pro-
cess with a depth first search on T1 and T2. Two successive steps are repeated
during the process and different hypotheses are studied (see figure 1): the first
step determines the best out-edge matching set from a vertex. The second step
determines the next best vertex matching in each out-edge subtree.

As the number of possible solutions is too large, some “bad” hypotheses are
eliminated. The difficulty with this approach is the choice of best match at each
step. This algorithm builds a research tree representing all possible matches
where only the most probable configurations are studied.

2.3 Step I: Out-Edge Matching Set Hypothesis

Assumption: Let v1 and w1 (respectively v2 and w2) be two vertices of V1 (re-
spectively V2). P(w1, v1, w2, v2) denotes a path matching between P (w1, v1) and
P (w2, v2). Actually, we assume that v1 and v2 (respectively w1 and w2) represent
the same bifurcation in a vascular system. At this step, T1(v1) and T2(v2) are
not yet matched.

Generation: First, to continue the matching process between T1(v1) and T2(v2),
the best out-edge matches between out(v1) and out(v2) have to be determined
(figure 2). Let O1 = out(v1) and O2 = out(v2). An out-edge matching set hypoth-
esis is noted He(v1, v2). An hypothesis is represented by an out-edge matching
set Ef (v1, v2) which characterizes a match between k elements of O1 and O2.
Ef (v1, v2) = {(e, f(e)),∀e ∈ h(O1)} where f ∈ Bh(O1),h(O2) and h ∈ Ck

O1,O2
.

Indirectly, this out-edge matching set assumes that some out-edges of O1 (re-
spectively O2) noted h(O1)c (respectively h(O2)c) have no association. Thus,
some subtrees have no match in the other graph.
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Fig. 1. This figure shows the successive steps of tree matching process and hypotheses
generation

Fig. 2. The figure shows the creation of out-edge matching set hypotheses from a ver-
tex matching. The left illustration resumes previous hypothesis. Other show 2 possible
solutions where an out-edge matching set is chosen for each solution. Hypotheses sup-
pose that few out-edges have no their equivalent in other tree and thus that the subtree
correspondent is not match

Let φ(v,E) = {T+(u),∀(v, u) ∈ E} the subtree induced by a vertex and a
subset of its out-edges. φ(v1, h(O1)c) represents subtrees starting from v1 that
have no match.

If we assume that |O1| ≤ |O2|, the possible hypotheses are given by:

He(v1, v2) = {(Ef (v1, v2), φ(v1, h(O1)c), φ(v2, h(O2)c)} ,
∀k ∈ [0, |O1|],∀h ∈ Ck

O1,O2
,∀f ∈ Bh(O1),h(O2)

(1)

Combinatory: When this association rule is respected, all out-edge matching
sets can be created. Let k ∈ [0, |O1|], the number of possible function h which
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choices two subsets with k elements in O1 and O2 is |Ck
O1,O2

| = Ck
|O1| × Ck

|O2|.
Moreover, the number of possible bijections between two subsets with k elements
is |Bh(O1),h(O2)| = k!.Thus, the number of out-edge matching set hypotheses is
|He(v1, v2)| =

∑Nmin

k=0 k!Ck
|O1|C

k
|O2| where Nmin = min(|O1|, |O2|).

2.4 Step II: Path Matching Hypothesis

Supposition: An out-edge matching, noted E i
f (v1, v2) = (e1, e2), assumes that

an edge e1 ∈ O1 and an edge e2 ∈ O2 match (represent the same start vessel).
This step purpose consist in finding the next common bifurcation in subtrees
T1(tgt(e1)) and T2(tgt(e2)) closest to v1 and v2 then we restart at step I. Due
to segmentation defects, tgt(e1) and tgt(e2) not necessarily represent the same
bifurcation. For this fact, we search a vertex matching in subtrees and not only
between tgt(e1) and tgt(e2) (Fig. 3).

Generation: The research of next vertex matching is restricted on the L first
level of subtrees T1(tgt(e1)) and T2(tgt(e2)). Thus, we search the best vertex
matching between DVL(e1) and DVL(e2).

Now, Let (w1, w2) a vertex matching with w1 ∈ DVL(e1) and w2 ∈ DVL(e2).
w1 are not necessary equal to tgt(e1) and this vertex matching imply a path
matching P(v1, w1, v2, w2) = (P (v1, w1), P (v2, w2)). This match also imply that
some subtrees starting from P (v1, w1) are not matched. We note this forest
of no matching subtrees as ψ(v, w) = {T+(u),∀u ∈ sons(k),∀k ∈ VP , T+(u) ∩
P (v, w) = {k}} where VP = vertices of (P (v, w))/{v, w}. The set of possible
path matching is defined as:

Hv(e1, e2) = (P(v1, w1, v2, w2), ψ(v1, w1), ψ(v2, w2)) ,
∀w1 ∈ DVL(e1),∀w2 ∈ DVL(e2)

with v1 = src(e1) and v2 = src(e2)
(2)

Combinatory: Many path matches can be created. Thus, if we assume that
T1(tgt(e1)) and T2(tgt(e2)) are complete on the L-first level and if in each bi-
furcation there are two out-edges, the number of path matching hypotheses is
|Hv(e1, e2)| =

∑L
k=0 2k ×∑L

k=0 2k = (2L+1 − 1)2.

Fig. 3. Figure shows the creation of path matching hypotheses from an out-edge match-
ing. Three solutions are illustrated
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2.5 Hypotheses Selection

In the previous sections, we have seen how to generate all matching hypotheses.
However, all possible tree matchings can not be explored due to huge combi-
natory and only the best hypotheses must be kept. The matching criterion is
computed on the current match and only best solutions are kept to explore sub-
graphs. In fact, we want to minimize a global cost function (sum of local criteria)
and discard temporary solutions with high cost. Nevertheless, we cannot accu-
rately compare the same matchings between hypotheses. We have introduced
a weight for hypotheses which represents the tree area already processed. It is
used to compute a relative cost and thus to compare hypotheses.

In this manner, the n best out-edge matching set hypotheses Hei must be
selected for the step I and the m best path matching hypotheses Hvi for step II.

The local cost functions are computed for each hypothesis, and are used to
distinguish two hypotheses and keep the best choices.

cost(Hei(v1, v2)) =
∑N1

i=1 cost(E i
f (v1, v2)) +

∑N2
i=1 cost(φi(v1, h(O1)c))

+
∑N3

i=1 cost(φi(v2, h(O2)c))

cost(Hvi(e1, e2)) = cost(P(v1, w1, v2, w2)) +
∑N1

i=1 cost(ψi(v1, w1))
+
∑N2

i=1 cost(ψi(v2, w2))

(3)

In these equations, we can observe three types of cost: a matching cost be-
tween two out-edges, a cost between two paths and a cost for subtrees which are
no matched. In next sections, we detail each costs.
Out Edge Matching Cost: To simplify notation, we note an out-edge matching
cost cost(E i

f (v1, v2)) = oemc(e1, e2). Remember that an edge e represents a vessel
between two bifurcations. In the following expression costs, e(t) is the 3D para-
metric curve representation of the vessel, r(t) represents the vessel’s radius along
the curve and l is the curve’s length. With oemc, we compare edge orientation
and edge radius.

oemc(e1, e2) =
∫ lmin

0
‖e1(t)− e2(t) + e1(0)− e2(0)‖2dt +

γ

∫ lmin

0
‖1− r1(t)

r2(t)
‖2dt

(4)

Path Matching Cost: P (v1, w1) denotes a path composed of successive edges
(vessels). However to simplify notations, we note P (v1, w1) = e1 where e1 repre-
sents a virtual edge. Notations become cost(P(v1, v2, w1, w2)) = pmc(e1, e2). In
this cost, weights are added to favor path with same length and short paths, as
there are many common nodes in both studied subtrees.

pmc(e1, e2) = (1 + α
lmax

lmin
+ β

l1 + l2
2

)× (γ
∫ 1

0
‖1− r1(t× l1)

r2(t× l2)
‖2dt +∫ 1

0
‖e1(t× l1)− e2(t× l2) + e1(0)− e2(0)‖2dt)

(5)
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No Matching Tree Cost: We have previously considered a cost for no inclusion
subtree in the matching solution. We have noted these costs cost(φi(u,E)) and
cost(ψj(u, v)). These subtrees T+(w) are defined by a vertex w. To simplify
notations, we replace the previous expression cost by nmtc(w). This cost is very
important and the choice for weighs is difficult. If this cost is too high then all
nodes are matched and conversely, if it is too low, we have no selected match.

nmtc(v) = (1 + δ
|T (v)|
|T | )× pmc(e, g(e)) +

|sons(v)|∑
k=1

nmtc(wk)

with: g(e) = e but with r(t) = Rmin minimum radius to vessel segmentation
(6)

3 Experiments and Validation

3.1 Validation Protocol on Virtual Patients

To test and validate our algorithm, we have worked on a liver and its hepatic
vascular system. To work on a complex vascular system (280 nodes), the Visible
Man (cf. The Visible Human Project of the NLM) has been segmented.

To simulate deformations, we have used the minimally invasive hepatic surgery
simulator prototype (Fig. 4) developed at the INRIA [6]. The goal of this simula-
tor is to provide a realistic training framework to learn laparoscopic gestures. For
this paper, we used it only to simulate deformations of the liver and its vascu-
lar system. This simulator uses complex biomechanical models, based on linear
elasticity and finite element theory which include anisotropic deformations.

To simulate segmentation errors on our phantom, we have pruned random
tree branches. It’s more probable to loose small vessels than to loose large vessels.

3.2 Results on a Virtual Patient

The results on a virtual patient are good (figure 6) and fast (about 4 minutes to
register 380 nodes on 1GHz PC). We have realized 10 different deformations on

Fig. 4. [Left] Surgery simulator prototype developed by INRIA. [Right] Modeling a
contact between a surgical tool and the liver soft tissue model
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Fig. 5. [Left] Example of small deformations realized with the simulator. [Right] Ex-
ample of a pruning representing 20% of the surface tree

Fig. 6. [Left] Deformation and pruning on the Visible Man computed by the INRIA
simulator. [Right] Figure shows result of our oriented tree matching, match are repre-
sented by arrows and represent 90% of all nodes

Fig. 7. [Left] Real patient where the vascular system has been segmented between
two acquisitions. [Right] Figure shows result of our oriented tree matching, match are
represented by arrows and represent 95% of all nodes

the Visible Man’s liver. For each deformation, 50 random prunings are computed
to lost approximately 20% of surface branches in both trees (figure 5).
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We match 90% of all common nodes. The most part of matching errors (in-
correct node correspondences and lost branches) is localized on terminal edges.
On these nodes, the algorithm suffers from a lack of information (no subtree,
dense node concentrations, small vessels). This make the matching task harder.

3.3 Results on a Real Patient

We have tested our algorithm on a real patient between two acquisitions during
his therapy. The trees are simpler for our virtual patient and cost weights have
been modified in order to get better matches. However, the result is good and
promising for the next validation on a database of real patients: we have matched
95% of all common nodes (figure 7).

4 Conclusions and Future Work

We have presented an original new method to match vascular system between
two acquisitions with a tree matching. This method is specific, fast and robust
on a complex vascular system. The early stage of validation is very encouraging:
most nodes are matched correctly. Thanks to the virtual database generated by
the INRIA simulator we could test several configurations. Nevertheless, a lot of
work needs to be done.

Presently, we concentrate our efforts on the design of cost function and its
relative cost weights to get an algorithm more robust on large deformations. We
will soon propose to apply the estimated deformations on a subtree of matched
nodes to superimpose them.

In parallel, we will validate our works on a real patients database with the
collaboration of Strasbourg hospital and also propose a new tool for automatic
diagnosis of tumors evolution in the liver. The graph matching algorithm could
ease the vessel segmentation process by detecting missed branches on the other
graph.

Acknowledgments. We thank the Strasbourg hospital and their surgeons for
providing images as well as their advices on “standard” deformations applied on
the liver. This work have benefitted from the segmentation program of vascular
system developed by the IRCAD R&D team. The realistic liver deformations
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Abstract. In a video surveillance system the object tracking is one of the most 
challenging problem. In fact objects in the world exhibit complex interactions. 
When captured in a video sequence, some interactions manifest themselves as 
occlusions. A visual tracking system must be able to track objects which are 
partially or even fully occluded. In this paper we present a novel method of 
tracking objects through occlusions using a multi-resolution representation of 
the moving regions. The matching between objects in two consecutive frames 
to recognize the trajectories is preformed in a graph theoretic approach. The ex-
perimental results on the  standard database PEST2001 show that the approach 
looks promising. 

1   Introduction 

Real-time object tracking is recently becoming more and more important in the field 
of video analysis and processing. Applications like traffic control, user–computer 
interaction, on-line video processing and production and video surveillance need 
reliable and economically affordable video tracking tools. In the last years this topic 
has received an increasing attention by researchers. However many of the key prob-
lems are still unsolved.  

Occlusions represent one of the most difficult problems in motion analysis. Most 
of early works in this field either do not deal with occluding cases at all [14] or im-
pose rigid constraints on camera positioning [2], in order to make the problem tracta-
ble. While it is possible to find applications where this is acceptable, in many real 
world cases the ability to deal with occlusions is essential to the practical usefulness 
of a tracking system. In fact, very often the camera positioning is dictated by architec-
tural constraints (e. g., inside of a building), and furthermore it may not be desirable 
to have a point of view that is too high with respect to the observed scene since this 
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may limit the ability to classify the tracked objects. Hence a tracking system should 
be prepared to face the possibility that the object being followed gets (at least par-
tially) covered either by a static element of the scene (e.g. a tree or a wall) or by an-
other moving object. This is particularly true when the objects being tracked are per-
sons, since even in a not crowded scene two persons are likely to walk so close to 
each other (say because they are talking) to form an occlusion. 

In this paper we present a novel algorithm for object tracking that is able to deal 
with partial occlusions of the objects. In particular, our algorithm is based on a py-
ramidal decomposition of the objects being tracked, using a multi-resolution ap-
proach. When an object is partially occluded by another, the algorithm descends to a 
more detailed level of representation in order to assign each part of the collapsed 
region to the proper object.  

In the paper we focus our attention only to the tracking phase of the system. This 
phase is built upon a foreground detection technique described in another work [3], 
which identifies for each frame of the video which pixels (grouped into connected 
components) belong to the moving regions. 

The rest of the paper is organized as follows. A review of related research is pre-
sented in Section 2. Section 3 describes the architecture of our tracking system. In 
Section 4 and Section 5 our algorithm is described with some examples. Section 6 
presents the experimental results on a standard database of video sequences. Finally, 
some discussion and conclusions can be found in Section 7. 

2   Related  orks 

In the last decade there has been several works on tracking moving objects through 
occlusions.  

A first group of algorithms [4,15] deals with occlusions by estimating positions 
and velocities of the objects participating to the occlusion. After the occlusion, the 
correct object identities are re-established using estimated object locations. In [15] 
the estimation is performed by Kalman filters. In these systems if during the occlu-
sion one of the objects suddenly changes its direction the estimate will be inaccu-
rate, possibly leading to a tracking error. In [4] when there is a merge between re-
gions, the position of the single regions are the same of the merged region that is 
the objects belonging to the region take the coordinates, the center, etc. of this lat-
ter. In all the works of this group, statistical features measured before the occlusion 
begins are used to resolve the labels after the occlusion; however, the systems is not 
able to decide about which pixels belong to which object during the occlusion 
event. 

A different framework used in object tracking is layered image representation 
[18], in which image sequences are decomposed into a set of layers ordered by depth, 
along with associated maps defining motions, intensities and opacities. The layer 
ordering, together with the shape, motion, appearance of all layers, provide complete 
information for occlusion reasoning. The drawback of these algorithms is the high 
cost in terms of computational complexity of the algorithm that assigns each pixel to 
the correct layer. In order to reduce the cost, approximate solutions to the layer as-
signment problem are described in [18]. 

W 



 A Graph-Based, Multi-resolution Algorithm 

 

195 

Most of the published works [1, 5, 6, 9, 11, 12, 13, 16,17] construct appearance 
models of the tracked objects so that their identity can be preserved through occlusion 
events. In [1] a feature-based method is used. In order to handle occlusions, instead of 
tracking entire objects (specifically vehicles), object sub features are detected and 
tracked. Then, such features are grouped into objects, using also motion information 
derived from the tracking. This approach however is very computationally expensive; 
also, it cannot be easily extended to non-rigid objects (such as persons). The works of 
Haritaoglu et al. [6] and Wren et al. [17] present a system to recognize people. Both 
use silhouettes to model a person and his parts; however [17] assumes that there is 
only a single person in the scene while [6] allows multiple person groups and isolated 
people. During an occlusion, a group (a detected moving region) is segmented into its 
constituent individuals finding the best matching between people models and parts of 
the region. The other works [5, 9, 11, 12, 13,16] use color information to represent the 
objects when they are isolated (building the so-called appearance model of the ob-
ject). This enables the correct segmentation of the objects when they are overlapping 
during an occlusion: the algorithms search for the labeling of the subregions that 
maximizes the likelihood of the appearance of the detected region given the models of 
the individual objects. In [16] the appearance model of an object is a template mask 
derived by shape and color information. In [11, 12,13] an object is modelled as a set 
of vertically aligned blobs (since the objects to detect are people) where a blob is a 
region with a coherent color distribution. These works differ from each another in the 
definition of the coherence criterion. In [5] two levels of the tracking are performed: a 
blob level tracking (in a graph-based framework) that is the tracking of the connected 
moving regions and an object level tracking in which an object consists of one or 
more blobs, and a blob can be shared among several objects. In [9] simple shape and 
color information are used because the work proposes to deal with low – resolution 
video sequences. 

The method we propose can be included in the last category, since it is based on an 
appearance model. In particular, we model a region with a hierarchical decomposition 
represented as a graph pyramid; then, during an occlusion, for each region that repre-
sents a group of objects, we try to segment the region by matching its hierarchy with the 
hierarchies of the objects present before the occlusion. The advantage of our proposal 
with respect to similar techniques is that the matching is performed in a top down fash-
ion: the algorithm starts with the topmost level of the hierarchies (that is, the less de-
tailed one), iteratively resorting to lower, more detailed levels only in case of ambigui-
ties. In this way, the computational cost is kept low in the average case, while retaining 
the ability to perform a precise segmentation in the infrequent difficult cases. 

3   The Proposed Representation and Algorithm 

Let us clarify some terms to better understand the description of the algorithm: we 
mean by term regions (or equally detected regions) the connected regions coming out 
by foreground detection step. With the term objects we mean the real objects of inter-
est (people, car, etc.) present in a frame, so during an occlusion a single detected re-
gion can be composed by more objects. The simplest representation of a detected 
moving region is provided by its bounding box, which contains enough information 
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for tracking when there are no occlusions. Our method is based on a more complex 
representation, based on a graph pyramid, that in absence of occlusions retains the 
simplicity and effectiveness of the bounding box, but enables a more accurate object 
matching to take place during an occlusion. Namely, each moving region is repre-
sented at different levels of resolution using a graph for each level. At the topmost 
level, the apex of the pyramid, the graph is composed by a single node, containing as 
attributes the position and dimension of the bounding box, and the average color. At 
lowest level there is an adjacency graph, where the nodes represent single pixels, and 
the edges encode the 4-connected adjacency relation. The intermediate levels are 
obtained by a bottom-up process, using the classical decimation-grouping procedure 
described in [10], where color similarity is used to decide which nodes must be 
merged. Notice that the number of levels in a pyramid is not fixed, but depends on the 
color uniformity of the region. Each intermediate node represents a sub region of the 
whole region, and its attributes are the bounding box and average color of that sub 
region. Since the construction of the pyramids is an expensive task, it is performed 
only on the first frame for all the moving regions. Then, for objects not occluded, the 
pyramid at successive frames is incrementally derived by the one at the previous 
frame. Only when an occlusion happens, the corresponding pyramid needs to be re-
computed from scratch. 

During the tracking process, each node in the pyramid receives a label represent-
ing the identity of the object to which the corresponding (sub)region belongs. When a 
(sub)region contains parts of more than one object, the corresponding node is labelled 
as MULTILABEL. 

Now lets turn our attention on the tracking algorithm. The goal of this algorithm 
can be stated as follows: given the labelled representation of a frame It and the repre-
sentation of the next frame It+1, the algorithm should find a labelling for this latter that 
is consistent with object identities. 

 

Fig. 1. Scheme of the Tracking Algorithm 

To achieve this result, the algorithm proceeds as follows: after a first initialization 
step, in which the graph pyramid is computed for each region, and labels are assigned 
assuming that each region contains a single object, the algorithm compares the top-
most levels of each pyramid in It with those in It+1. The way the comparison is per-
formed is detailed in section 4. If the comparison outcome is sufficient to assign a 
label to each node, the algorithm terminates. Instead, if some ambiguities arise (as is 
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the case when two objects overlap), the algorithm is repeated using the next levels of 
the pyramids, until either a consistent labelling is found, or the bottom of the pyramid 
is reached. In this (infrequent) case, the algorithm outputs a “best effort” labelling. 
The whole process is sketched in Fig 1, while Fig. 2 illustrates the pyramidal repre-
sentation of a toy image. 

 

Fig. 2. The hierarchical representation a) The input image; b) the detected moving regions; c) 
the graph pyramids representing the detected regions  

4   Comparison and Processing of Adjacent Frames 

Let It and It+1 be two consecutive frame images. At each level of the hierarchical rep-
resentation there is a graph for each detected region, and the algorithm needs to com-
pare each graph of It with each graph of It+1. In order to perform this comparison, we 
will first introduce a similarity measure between graph nodes, and then we will ex-
plain how this graph similarity is used in the comparison and labelling process. 

As we told in previous section, each node is described by the dimension and the 
position of the bounding box and by the color (or the gray level, for monochrome 
videos). We have defined a color similarity Sc∈[0,1], a dimension similarity Sd∈[0,1] 
and a position similarity Sp∈[0,1]. These three functions are based on euclidean dis-
tance in the corresponding spaces, and are normalized so that their value is 1 if and 
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only if the corresponding features are equal. Then, we define the similarity between 
two nodes n and m as the product S(n, m) = Sc⋅Sd⋅Sp. In order to avoid to consider the 
matching between nodes that are too dissimilar, we have introduced a threshold T2, 
and we truncate S to 0 (meaning that the nodes should never be matched). 

We will now explain with more details how the comparison and labelling process 
is performed. First, at the current level of the comparison, the algorithm computes the 
similarities among all the nodes of graphs of It and all those of It+1 that have not been 
labelled in the previous steps. Then an association graph is built. The association 
graph a bipartite graph where each node n of It is linked to each node m of It+1 such 
that S(n, m)>0. Finally, a weighted bipartite graph matching (WBGM, see [8]) is 
performed, finding the matching between the nodes in It and those of It+1 that maxi-
mizes the sum of the corresponding similarities. At this point, each pair (n, m) of 
matched nodes is examined. The similarity S(n, m) is compared with a threshold T1 
(which is, clearly, greater than the previously defined T2). If S> T1, then the label of n 
is assigned to m. If this label is not MULTILABEL, it is also propagated to the de-
scendant of m at the successive levels; otherwise, the descendants of m will receive 
the label of the corresponding descendants of n in a recursive process. If S< T1, then 
the algorithm attempts a refined matching at the next level, marking the children of m 
and the children of all the nodes n’ of It for which S(n’, m)>T2 as candidates for fur-
ther processing in the next level of resolution. If a node m has no matching for which 
S>T2, and it is at the first level of resolution, then it is considered as a new object, and 
a new label is generated for it. Otherwise, if this node it is at a more detailed level, 
then it is marked as a new sub region, and will be labelled later. The algorithm termi-
nates when all the nodes of the current level receive a label, or the bottom level is 
reached. In this latter case, the algorithm uses the labelling derived by the found 
WBGM also when S<T1. At this point, the nodes that have been expanded for proc-
essing at a higher resolution are labelled in a bottom-up process, propagating to the 
parent the label of the children, if they have the same label, or labelling the parent as 
MULTILABEL. During this process, also new sub regions are labelled, using the 
label of their sibling with the greatest similarity. 

5   An Example 

In order to clarify the algorithm, we will now present its phases with reference to a toy 
problem. In Fig. 3 are shown the two adjacent frames that we will use for this example, 
together with their representation. As it can be seen, there are two objects (A1 and A2) 
in the first frame, that in the second frame overlap forming a single region B1. 

 

Fig. 3. The example: two adjacent frames with the moving object detected 



 A Graph-Based, Multi-resolution Algorithm 

 

199 

Fig. 4 shows the comparison at the first resolution level. Both S(A1, B1) and 
S(A2, B1) are above T2, but none of them is above T1, so the node representing B1 
cannot yet receive a label, and must be expanded together with A1 and A2.  

 

Fig. 4. The example: comparison at the first resolution level 

Fig. 5 shows what happens at the second resolution level. Now the pairs (A11, 
B11), (A22, B14) and (A21, B13) have a similarity greater than T1, and so can be 
labelled. However, the similarity between A12 and B12 is still under the threshold T1, 
so these two nodes need to be further expanded.  

 

Fig. 5. The example: second resolution level 

 

Fig. 6. The example: last level matching 

The third level matching is depicted in Fig. 6. Now A121 is matched with B121 
having S>T1, while A122 is left unmatched. So B121 receives a label, that is propa-
gated to B12. Now B1 can be labeled as MULTILABEL. 

6   Experimental Results 

The goal of our effort was to develop a tracking system for handling occlusion. Given 
this focus, we report results on PETS 2001 database [7]. The PETS dataset, is a stan-
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dard database to evaluate the performances of tracking systems. We perform our ex-
perimentation on test dataset 1, camera 1. In the video sequence there are moving 
people and cars that occlude each other. The same dataset is used by Fuentes [4] to 
evaluate his tracking algorithm. In Tab. 1 the characteristics of chosen video are 
shown: the video consist of 2688 frames in which there are about 400 frame that pre-
sent occlusions.  

Table 1. PETS 2001 characteristics  

Dataset name Number of frames Percentage of occlusions Environment 
PETS 2001 

Test Dataset 1 Camera 1 
2688 15% Outdoor 

In order to provide a quantitative measure of the tracker performance we use the 
performance index P presented in [3]. In Tab. 2 experimental results are shown.  

Table 2. Experimental results: Comparison with a standard tracking algorithm 

Experiment TP TN FP FN P 

#1 Whole dataset on our algorithm 5776 14 0 124 0.979 

#2 “Occlusions” sequence with our algorithm 58 2 0 10 0.857 

#3 “Occlusions” sequence with a standard track-
ing algorithm 

37 2 0 31 0.557 

#4 While dataset on a standard tracking algo-
rithm 

5744 14 7 156 0.972 

The first row are the values of performance for the whole dataset. In the whole 
video sequence the performances are very high. In the second row we show the per-
formances on about one hundred frames in which there are only occlusions (in Fig. 7 
three frames of this sequence with the detected objects are shown). The results are 
quite promising considering that in real situations the percentage of occlusions is 
relatively low; besides the performance is much greater than a simple algorithm that 
does not handle with occlusions (third row). Finally, we shown the results on the 
whole dataset of the simple tracking algorithm. The two algorithms are comparable. 
This proves the effectiveness of our algorithm that deals with occlusions also if the 
latter are, in percentage, not much with respect of the entire video sequence. 

Following a more interesting comparison is shown. We compared the algorithm 
with another algorithm (Senior et al. [16]) that deals with occlusions. In [16] some 
indexes, suitable to the evaluation of this kind of algorithms, are shown. Besides Sen-
ior et al. use the same dataset. We computed the values of indexes for our algorithm 
and we compared them with those presented by the authors themselves. Tab. 3 shows 
the effectiveness of our approach: all the values of error indexes are much less than 
those of the algorithm [16].  
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Table 3. Experimental results: Comparison with another algorithm that deals with occlusions 

 Senior algorithm [16] Our algorithm 

Track error fp 16/14 4/14 

Track error fn 4/14 1/14 

Average position error 5.51 0.24 

Average area error -346 -8.4 

Average detection lag 1.71 0 

Average track completeness 0.12 0.04 

7   Conclusions 

In this paper we discussed an object tracking algorithm based on a graph theoretic 
approach with a multi-resolution representation to handle with occlusions. We dem-
onstrated that by using a multi-level representation of moving objects in the scene 
together with a graph-based approach, it is possible to deal with occlusions: the algo-
rithm can recognize, in a unique connected moving region, the parts that belong to 
different objects. 

Fig. 7.Three images from the dataset #2. a) Before the occlusion; b) During the occlusion; c) 
After the occlusion 

-
hancements of the algorithm: one of this is the increasing of the speed of the algorithm. 
In fact the execution time of the algorithm is relatively high because of the construction 
of the pyramid. The discussed idea of keeping the pyramid of an object for several 
frames is one of the possible solutions, but we have to investigate also other ones. 
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Coarse-to-Fine Object Recognition Using
Shock Graphs
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Abstract. Shock graphs have emerged as a powerful generic 2-D shape
representation. However, most approaches typically assume that the sil-
houette has been correctly segmented. In this paper, we present a frame-
work for shock graph-based object recognition in less contrived scenes.
The approach consists of two steps, beginning with the construction
of a region adjacency graph pyramid. For a given region, we traverse
this scale-space, using a model shock graph hypothesis to guide a region
grouping process that strengthens the hypothesis. The result represents
the best subset of regions, spanning different scales, that matches a given
object model. In the second step, the correspondence between the re-
gion and model shock graphs is used to initialize an active skeleton that
includes a shock graph-based energy term. This allows the skeleton to
adapt to the image data while still adhering to a qualitative shape model.
Together, the two components provide a coarse-to-fine, model-based seg-
mentation/recognition framework.

1 Introduction

Object recognition is one of the primary goals of computer vision, allowing an
image signal to be semantically labelled according to a priori knowledge of ob-
jects in the world. Early object recognition work in the 60’s and 70’s focused
on the categorization or generic object recognition problem, in which exemplar
objects, i.e., specific object instances, were matched to coarse, prototypical mod-
els designed to be invariant to within-class shape and appearance deformation.
Although an admirable goal, the low- and intermediate-level infrastructure did
not exist to bridge this representational gap [3, 4], leading to systems tested on
contrived scenes under contrived viewing conditions.

Over the next 30 years, in a drive toward the recognition of more realistic ob-
jects under more realistic imaging conditions, recognition systems became more
exemplar-based, beginning with the CAD-based vision systems of the 80’s, then
moving toward the appearance-based models of the 90’s and the recently popu-
lar interest-point models. For the first time, complex objects can be recognized
in cluttered scenes under varying illumination. However, since such systems are
based on the distinguishing local textures of objects and not their prototypical
shape, they are ineffective for generic object recognition.

Different object exemplars belonging to a single class may have different
color, texture, exact geometry, and part articulation. But at some coarse level of
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description, the exemplars in a class have similar shape. It is for this reason that
the generic object recognition community has focused primarily on shape as the
class-defining feature. Moreover, the silhouette has emerged as a popular feature
with which to characterize the shape of an object. Unlike extracted contours
internal to the object, which may reflect either shape or texture, the occluding
contour of the object is guaranteed to reflect only shape information. Since the
occluding contour depends on viewpoint, 3-D object recognition systems are
view-based, in which each generic object is represented as a set of characteristic
silhouettes. Provided that an imaged object’s silhouette can be extracted from
an image, it is matched to a database of silhouettes grouped by object. The
closest matching silhouette defines both the identity of the object as well as its
pose (depending on the sampling resolution of the viewing sphere over which the
silhouettes are captured).

An exact characterization of a silhouette would be appropriate for exemplar-
based object recognition. However, since our goal is generic object recognition,
we require a silhouette-based representation that is invariant not only to scale,
translation, rotation, and occlusion, but part articulation, within-class shape de-
formation, and minor rotation in depth. The shock graph [11] has emerged as a
powerful, generic shape description possessing these properties, and is based on
a labelling and partitioning of the skeleton points (shocks) making up the medial
axis transform of a shape. Shocks are labelled according to four qualitatively-
defined classes, with contiguous clusters of homogeneously labelled shocks com-
prising the nodes in a shock graph. In the last 5 years, shock graphs have led
to a number of successful silhouette-based recognition systems based on graph
matching, e.g., [12, 8, 13, 9, 6, 5].

A careful examination of the shock graph-based recognition literature will
show that most, if not all, approaches are typically applied to unoccluded, pre-
segmented closed contours, with a only few approaches, e.g., [12, 9], tested on
occluded shapes. Clearly, the shock graph-based recognition community has fo-
cused more on the shape description and matching problem and less on the
segmentation of the shapes. The shock graph community has therefore, and un-
derstandably, met with resistance and skepticism from those who claim that since
region segmentation is an unsolved problem, and since the occluding contour (sil-
houette) of an object requires that the object’s region be correctly segmented,
the whole notion of a shock graph rests on a weak foundation.

One can argue that the space of region segmentation errors is equivalent
to the space of possible occlusions, for region over-segmentation can be mod-
elled as an undetectable occluder (yielding a truncated silhouette) and region
under-segmentation can be modelled as the union of a detectable occluder and
the target object (yielding a silhouette that extends beyond the object). How-
ever, even though this argument has been made, e.g., in [12, 10, 6], it has not
been made convincingly with extensive simulation of segmentation errors. Un-
til testing is performed on real images of real objects, with massive over- and
under-segmentation, the shock graph recognition framework will remain on the
fringe of the object recognition community.
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Occlusion testing in the shock graph community typically involves subjecting
a target shape to minor occlusion. The shock graph is a distributed representa-
tion, with nodes corresponding to distinct parts, and one would expect that the
occlusion of one part will not affect the representation of another. Although this
is indeed true for well-separated parts on an object, occlusion can, in fact, result
in major changes in the topological structure of an object’s skeleton, yielding
major changes in its shock graph structure. Thus, in the presence of significant
region over- and under-segmentation, the resulting region’s shock graph may
bear little resemblance to the model shock graph to which it should match.
Since one cannot guarantee that region segmentation errors are minor, we need
an approach that couples object recognition using shock graphs with the un-
derlying region segmentation problem, yielding a segmented shape that closely
resembles a model object. This paper addresses this problem, and proposes a
two-part solution.

2 Region Segmentation and Description

We begin by constructing a region adjacency graph pyramid or scale space, based
on varying the parameters of the region segmentation algorithm (Comaniciu and
Meer [1]). By varying the segmentation parameters, we can obtain a variety of
segmentations, from heavily under-segmented to heavily over-segmented. The
resulting regions at a given level may not correspond to objects in the image
due to segmentation errors. However, the correct boundary of a given object
may, in fact, span multiple scales. Each region segmentation level yields a region
adjacency graph, with nodes representing region boundaries and edges specifying
region adjacency.1 Each node (region boundary), in turn, is represented by a
shock graph. The region adjacency graphs are linked together to form a tree
or pyramid, with a node at a coarser level pointing to one or more component
nodes at the next finer level.

3 Model-Based Region Grouping

Given our pyramid of region adjacency graphs, our goal is to try and segment
and recognize the object(s) in the scene. Using a model hypothesis for a given
region in the image, we will search the space of possible merges of adjacent re-
gions, at different scales, in an effort to strengthen the hypothesis beyond some
appropriate threshold. We proceed in a top-down manner, starting with hypothe-
ses for regions at coarser levels before proceeding to region hypotheses at lower
levels. By merging adjacent regions at different scales, we consider the space of
discrete “outward” perturbations of a region’s shape, whereas by descending to
a lower level when generating hypotheses, we consider the space of discrete “in-
ward” perturbations of a region’s shape. Such perturbations amount to moving

1 We gratefully acknowledge the region adjacency graph construction module provided
by Sven Wachsmuth.
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between adjacent levels in the pyramid, and we use model hypotheses, invoked
by region shape, to guide the traversal of the pyramid.

The model hypotheses are generated according to the framework described in
[6], as shown in Figure 1. For each region at the coarsest level, the region’s shock
graph is indexed into the database of model shock graphs, returning a small set of
promising candidates. These candidates, along with their similarity to the model
(computed by a matching algorithm), form the initial “open list”, sorted by a
cost function, in the traditional graph search algorithm (Nilsson [7]). As shown
in the algorithm described in Figure 2, the first element, or state, on the list is
removed and tested to see if it’s a solution. If not, the state is expanded to yield a
set of successor states, in this case the set of possible merges of adjacent regions
at the current or finer scales. If any of these successors results in a region whose
shock graph is closer to the model than the expanded hypothesis, the successor
is merged onto the open list (according to its evaluated cost). Although the
algorithm terminates when a solution has been found, it may continue if there
are other objects in the scene, i.e., regions not accounted for.

To illustrate the generation of successors, consider the example shown in
Figure 3, depicting three levels of segmentation. Consider the red ellipse at the
coarsest level. It’s successors at that level include its merge with the light blue
region to the left, and its merge with the pink region to the right. Its footprint
is shown in levels 2 and 3 by the dotted lines. At level 2, its two successors are
shown with black outline, while at level 3, its three successors are also shown
with black outline. Only those successors that improve the quality of the match
between the region’s shock graph and the hypothesized model’s shock graph,
are added to the open list; the rest are discarded. Finally, the cost function used
to rank the states on the open list governs the order in which hypotheses are
considered. In our experiments, we adopt a “best-first” approach, in which the
most promising hypotheses are expanded first, regardless of which levels their
component regions are drawn from. We have also explored a “breadth-first”
strategy, which favors hypotheses at coarser levels, as well as a “depth-first”
strategy, which favors hypotheses at finer levels.

Fig. 1. Generating Model Shock Graph Hypotheses for a Given Image Region Shock
Graph
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for level = 0 to maxLevel do {consider each level, from coarse to fine}
for all region R of level do {match all regions at the current level}

OPEN.push(match(R))
end for
while OPEN not empty do {if open is empty, go to the next level}

sort(OPEN, f) {sort open given the cost function selected}
(R, M) = OPEN.pop() {Consider the first element of the open list}
CLOSED.push((R, M)) {Move it to the closed list.}
if (R, M) is a solution then {if a solution is found, exit with success}

exit((R, M))
end if
for lev = level to maxLevel do {if it is not a solution, expand its children at each finer level}

R′ = footPrint(R, lev) {get the footprint of the region}
ADJREGIONS = adjRegions(R′) {get the regions adjacent to it}
for all region R′′ in ADJREGIONS do {try merging each adjacent region with the
“footprint”}

R∗ = merge(R′, R′′)
if sim(R∗, M) > sim(R, M) then {add the merge only if it improves the similarity with
the model}

OPEN.push((R∗, M))
end if

end for
end for

end while
end for
exit(“NO SOLUTION”) {if did not exit earlier, no solution was found}

Fig. 2. Algorithm for Performing Model-Based Region Grouping

Fig. 3. Successor Generation (see text for explanation)

4 Model-Based Region Fitting

The search space for our model-based merging process is clearly richer than a
single region segmentation. However, there may not exist a region segmentation
parameter setting (or at least one sampled in the construction of the scale space)
that recovers part of an object’s boundary. In this case, no amount of model-
based merging will recover that part of the boundary. It is here that we use
whatever matching contour we have accumulated and return to the image in an
attempt to find the contour. Just as we used a shock graph to guide our search
through the space of possible region segmentations, we will again use a shock
graph to guide our search for the missing contour, in an effort to fine-tune our
region to be even closer to the model.

We employ an active contour-like approach, and build in model constraints
based on the shock graph. Thus, like a traditional active contour approach, the
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Fig. 4. Region Refinement using an Active Skeleton. Left: active skeleton. Right: the
integrated radius function over small windows to the right (B) and left (A) of a skeleton
point are used to define the shock graph energy term. For example, in the case of the
constant cross-section type 3 node, the energy term would be proportional to the
absolute value of the difference in areas

contour is data-driven by gradient structure in the image. However, we diverge
from the traditional active contour in two important ways. First, we introduce
the concept of an active skeleton, to which external (image gradient-based) and
internal (smoothness) forces apply. Second, we introduce an energy term to the
active skeleton energy minimization that ensures that its shape, while adapting
to the image data, conforms to the model shock graph.

A hypothesis emerging from our model-based region segmentation step de-
fines an explicit correspondence between branches (nodes) in the shock graph
corresponding to the region group and branches in the model shock graph. Each
corresponding branch pair defines a set of corresponding contour points, since
each skeleton point defines a pair of contour points, as shown in Figure 4 (left).
These matching contour points are used to align the model silhouette to the
region group boundary. The same transformation is used to project the model
skeleton into the image, representing our initial active skeleton. As image gradi-
ent “forces” attract the model silhouette, the positions and/or radii of the active
skeleton points are updated to better fit the boundary data. As is common in
active contour formulations, the active skeleton is subject to internal smoothness
constraints.

Our second departure from traditional active contours is the explicit incor-
poration of model shape information as a deformation constraint. Since we know
the qualitative shape class of a model branch, we can penalize changes in skele-
ton point position and/or radius that deform the branch shape out of its model
class. An example of this additional energy term is shown in Figure 4 (right),
in which an energy term, proportional to the slope of the radius function over
a window, is used to maintain the branch’s type 3 (constant radius) shape. In
this way, a qualitative shape model can be folded into an active contour (in this
case, skeleton) formulation, providing much stronger deformation constraints.

Our algorithm for region refinement is shown in Figure 5. We loop through
each skeleton point on each branch, sampling nearby positions and radii and
updating the position and radius of the point if its energy decreases. Once all
skeleton points have been visited once, a branch adjustment is performed, allow-
ing an updated branch to “pull” any connected branches in order to maintain the
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while there is a branch that hasn’t converged and MaxIterations have not been exceeded do
for l in {1, ...., m} do {loop on branches}

if move[l] then {consider only the branches that haven’t converged yet}
curE = 0
for k in {1, ...., n} do {loop on skeleton points}

Emin = infinity
for all s in U(sk) do {consider points in s’ neighbourhood}

for all r in R(s) do {radius variation}
compute the locations of the corresponding contour points c and c′ given s and r
E′(s) = α ∗ Esm1(s) + β ∗ Esm2(s) + γ ∗ E′

im(s) + δ ∗ Eshock(s) {compute energy
at s}
if E′(s) < Emin then {check if it is the minimum energy; if it is, store the skeleton
and contour point locations}

Emin = E′(s)
smin = s, cmin = c, c′

min = c′

end if
end for

end for
curE = curE + Emin

move s to smin {move skeleton and contour points to the location that minimizes the
energy}
move c to cmin

move c′ to c′
min

end for
move skeleton points connected to the branch given branch junction
if |prevE[l]−curE| < minE then {if the new energy did not improve by much, the branch
converged}

move[l] = 0
else {no convergence yet}

prevE[l] = curE
end if

end if
end for

end while

Fig. 5. Refining the Model using an Active Skeleton

connectivity and integrity of the active skeleton network. Here, we draw on the
concept of an active contour network ([2]), in which a set of active contours are
connected at junctions using spring forces. The algorithm then iterates, visiting
each branch a second time, unless the branch has converged. When all branches
have converged, the algorithm terminates.

5 Results

To evaluate the model-based merging procedure, we captured model silhouettes
for a variety of views for each of 13 different objects. These objects, as well as
different objects belonging to the same set of object classes, were imaged in 15
test scenes, examples of which are shown in Figure 6. Each test scene was region
segmented at four levels, resulting in a region segmentation pyramid. Shock
graphs were computed for each region and models hypothesized. To evaluate
our algorithm, the correctness of the labelled regions (determined from ground
truth) was compared to the best results obtained if one were to opportunistically
choose from the set of four region segmentations that which yielded the best
results without region grouping.

In terms of degree of improvement, in the worst case (best baseline segmen-
tation), 33%, and in the best case (worst baseline segmentation), 45% of the
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Fig. 6. Examples of Test Images

hypotheses were incorrect in the baseline system, and became correct under our
framework, while there was a 0% change in the other direction. Our system is
therefore improving the recognition process considerably. Moreover, among those
hypotheses that stayed correct, the majority improved their matching score, with
a significant number passing over the solution threshold.

We now demonstrate the model-based region fitting process. Figure 7 shows
the four levels of region segmentation used to construct the region adjacency
graph pyramid for an input image containing a pair of scissors. Figure 8 illus-
trates the process of determining that portion of the region group which matches
the model and therefore participates in the aligning transformation. Finally, Fig-
ure 9 illustrates the initial model aligned in the image, along with the final resting
position of the active skeleton. Despite the presence of ambiguous contours in
the image, the active skeleton adapts to those contours which preserve the shock
graph labels of the individual branches. The classical, somewhat weak active
contour formulation is thus strengthened to include a much more flexible shape
model that, unlike statistical (active) shape models, needs no extensive training
while supporting full articulation and within-class deformation.

Fig. 7. The four segmentation levels of a test scene containing a scissors

Fig. 8. The points used to compute the model alignment. Left: result of the model-
based region grouping, with region group (in green) and matched shock graph (skeleton
in blue). Middle: silhouette of model shock graph. Right: those portions (red) of the re-
gion group skeleton that match the model shock graph, along with their corresponding
contour points (yellow) used to compute the aligning transformation
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Fig. 9. Model-Based Region Fitting using an Active Skeleton. Left: initialized active
skeleton (green) with corresponding contour points (yellow). Right: final active skeleton
(dark blue) with corresponding contour points (light blue)

6 Conclusions

Shock graphs offer a powerful framework for representing and matching qualita-
tive shape. Unfortunately, little effort has been devoted to their use in realistic
scenes in which a silhouette cannot be properly segmented. In this paper, we
attempt to address this problem, drawing on the assumption that since shock
graphs do provide locality of representation, portions of regions that are properly
segmented provide important clues as to what object is present (i.e., accounts
for a particular region). Introducing a region segmentation hierarchy, we can use
this model hypothesis to guide a search through a large space of possible splits
and merges of the regions. The resulting grouping may, in fact, span many levels
of the segmentation hierarchy.

We apply a standard state space search algorithm, and have explored a num-
ber of heuristics for ordering the search. In comparing the results to a baseline
single region segmentation, we found that our approach often found the cor-
rect hypothesis whereas the baseline system did not, and that baseline correct
hypotheses improved significantly in our approach. Preliminary results indicate
that our multiscale, model-based region grouping framework significantly im-
proves object recognition. Moreover, it is based entirely on a shock graph repre-
sentation and matching framework, offering hope that shock graphs can be used
under more realistic imaging conditions.

The model-based merging framework can be thought of as a mechanism for
guiding the search through a discrete space of large-scale perturbations. Unfortu-
nately, there is no guarantee that the correct shape exists in this space, requiring
that we return to the image to explore a continuous space of fine-scale pertur-
bations. In the second part of the paper, we again draw on the shock graph, but
this time, we use it to constrain an active contour that will settle on the data
subject to maintaining a qualitative shape model. We introduce the notion of an
active skeleton, an active contour that represents the skeleton and adapts to the
image data. Moreover, we add an energy term that keeps the individual skeleton
“parts” from deviating from their specified model classes.
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Abstract. A method allowing to integrate syntactic and semantic approaches in 
an automatic segmentation process is described. This integration is possible 
thanks to the formalism of graphs. The proposed method checks the relevancy 
of merging criteria used in an adaptive pyramid by matching the obtained seg-
mentation with a semantic graph describing the objects that we look for. This 
matching is performed by checking the arc-consistency with bilevel constraints 
of the chosen semantic graph. The validity of this approach is experimented on 
synthetic and real images. 

1   Introduction 

In image segmentation, human judgement is often required to control the quality of 
the result and to tune the segmentation parameters. This judgment may be seen as a 
semantic process. Introducing a semantic analysis in a segmentation process may 
strongly improve this segmentation. But how to do it?  

The graph representation is a very helpful tool to reach this goal. At the level of 
image content, many objects may be described by semantic graph whose nodes repre-
sent parts of an object and the arcs represent spatial constraints between object sub-
parts [1],[3],[5],[6],[14],[16]. Up to now, the limitation of many works on semantic 
graph lies in the necessity of starting with a correctly segmented image such that it 
can be labeled as in [1]. Unfortunately, obtaining a correct segmentation remains an 
open problem for many images of real life. A way to work with graph representation 
at the level of segmentation (from the level of pixels to the level of regions), is to 
work with adjacency graph. This approach is chosen by many authors due to some in-
teresting properties which make this formal representation very convenient to de-
scribe an image. Performing  a segmentation is possible, for example, by building a 
pyramid of  adjacency graph [2],[7],[8],[9],[11],[12]. In this kind of process the nodes 
representing pixels or set of pixels are merged in a succession of steps to produce a 
pyramid of  graphs whose nodes represent meaningful regions. The merging process 
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may be controlled by several local factors with the hope that the ultimate merging will 
provide a meaningful result. So the question is, how it is possible to introduce an auto 
tuning in the merging process such that it will check automatically the meaningful-
ness of the result or in other words the semantic compatibility? We note that the rep-
resentation of adjacency graph is close to the one of semantic graph. The difference is 
that in adjacency graph the nodes are regions of pixels and in semantic graph, the 
nodes are components of the image semantic content. Then, it seems natural to com-
bine this two types of representation. We propose to apply a semantic judgment on the 
ultimate  adjacency graph obtained after a low level segmentation process. This can 
be done by verifying if the adjacency graph  may be matched with the semantic graph. 
We present in this paper an approach of segmentation using a pyramidal merging 
process whose control criterion is automatically tune by feedback with a semantic fi-
nal checking. In section 2, we introduce the notions of semantic graphs and arc-
consistency checking. The implementation of complex spatial and morphological 
constraints will be studied. In section 3, the knowledge driven segmentation algorithm 
will be detailed. A set of experiments on synthetic and real images will be presented 
in section 4. Section 5 will comment and conclude this study. 

2   Semantic Graphs and Arc Consistency Checking 

High level interpretation  of images consists usually in matching each part of an im-
age with a meaningful representation. To perform the matching between a graph and 
the different subparts of a shape it is necessary to check the global consistency of the 
graph. Unfaithfully, it is a NP-complete problem. However, it is often possible to re-
duce the time complexity of this process by only taking into account local constraints: 
checking the arc-consistency. Several authors [3][14][16] proposed fast arc-
consistency checking algorithms. These algorithms try to associate only one value 
with one node. In high level interpretation of images, this assumption supposes to 
have an ideal segmentation (with one node of the graph is associated only one region). 
In practice it is very rare to obtain such a segmentation. It is the case for each segmen-
tation stage of a pyramid. Then if we want to have a correct semantic analysis of an 
over segmented image, it is necessary to associate with one node a set of regions. In 
the following sections the notions of semantic graphs and arc consistency checking 
applied to oversegmented images will be defined. Then some ways to describe com-
plex spatial relations are proposed. In the last sub-section the implementation of the 
arc-consistency checking algorithm with bilevel complex constraints is described. 

2.1   Semantic Graphs 

In semantic graphs, the high level constraint represented  by the edges are supposed to 
be known at the beginning of the matching process. These constraints are not created 
during the computation and are imposed by the application. Then, it is assumed that 
some specific constraints exist in the image and the aim is to find sets of regions satis-
fying these constraints (See Figure 1). We use the following conventions: 
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• Variables are represented by the natural numbers 1, ... n. Each variable i has an as-
sociated domain Di. We use D to denote the union of all domains and d the size of 
the largest domain. 

• All constraints are binary and relate two distinct variables. A constraint relating 
two variables i and j is denoted by Cij. Cij(v,w) is the Boolean value obtained when 
variables i and j are replaced by values v and w respectively. Let  R be the set of 
these constraining relations.  

A Finite-Domain Constraint Satisfaction Problem (FDCSP) consists of finding all 
the sets of values {a1, ..., an}, a1 x ... x an ∈ D1 x ... x Dn, for(1, ..., n) satisfying all re-
lations belonging to R. In this classical definition of FDCSP, one variable is associ-
ated with one value. This assumption cannot hold for some classes of problems where 
we need to associate a variable with a set of linked values as described in [5][6]. To 
cope with this difficulty, we defined the Finite-Domain Constraint Satisfaction Prob-
lem with Bilevel Constraints (FDCSPBC). It consists in introducing two levels of con-
straints, one level between each couple of nodes (spatial relations between objects as-
sociated with a node) and one level between each couple of regions classified inside 
one node (spatial relations between subparts of the object associated with a node).  

Definition 1. Let Cmpi  be a compatibility relation, such that (a,b) ∈ Cmpi iff a and b are 
compatible. Clearly Cmpi is reflexive. Let Cij be constraint between i and j. Let be a 

pair Si, Sj such that Si ⊂ Di  and Sj ⊂ Dj,  Si, Sj  Cij means that (Si, Sj) satisfies the 

oriented constraint Cij. 

Si, Sj  Cij ⇔  ∀ai ∈ Si, ∃(a'i, aj) ∈ Si  x Sj, such  that (ai, a'i) ∈ Cmpi  and (a'i,aj) ∈Cij   

            and ∀aj ∈Sj, ∃(a'j,ai) ∈ Sj x Si, such  that (aj, a'j) ∈ Cmpj and (ai,a'j) ∈ Cij.  

Sets {S1 ... Sn} satisfy FDCSPBC iff   ∀ Cij    Si, Sj  Cij. 

            a.   b.   

Fig. 1. A semantic graph (b.) describing a flower and a segmented image (a.). In this case, the 
domain D is made up of the set of regions of the image 

A graph G is associated to a constraint satisfaction problem as follows: G has a 
node i for each variable i. Two directed arcs (i,j) and (j,i) are associated with each 
constraint Cij. Arc(G) is the set of arcs of G and e is the number of arcs in G. Node(G) 
is the set of nodes of G and n is the number of nodes in G.  

In the following, after having define the notion of intra-node relational constraints 
(corresponding to the notion of compatibility relation Cmpi ), we will focus on the no-
tion of arc-consistency. 
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2.2   Intra-node Relational Constraints 

Regions associated with a given node support themselves if their union satisfies con-
straints imposed on the node. Unfaithfully, checking this condition is a combinatorial 
problem. It can be helpful to soften the toughness of these conditions. We propose 
two weaker conditions:  

• A local condition: two regions rj and rk ∈ Di (domain of node i) support themselves 
if it exists a union 

),(, kj rrlA   of regions ∈Di such that rj and rk ∈ 
),(, kj rrlA , and such 

that the characteristics of 
),(, kj rrlA   are compatible (it means that the constraints are 

partially satisfied) with the constraints imposed on the node i. 
• A global condition: let 

),(, kj rrlA   be defined as previously. Let be rj ∈ Di, let be 

jB =
NlDr

rrl

ik

kj
A
∈∈ ,
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),(,
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compatible with the constraints of the node i. E is a set of regions corresponding to 
nodes of the largest connected graph describing the link between regions following 
relational constraints for the node i.  

The Figure 2 illustrates these notions: Region P is the union of all the regions be-
longing to the object represented by the node i. P is not known and is the region to 
identify. We denote Nx any region satisfying intra node relational constraints (local 
condition) and belonging to P. We denote My any region satisfying intra node rela-
tional constraints and not belonging to P. We denote E= ((∪Nx) ∪ (∪My)). We know 
that some of the following predicate are true {Nx ⊆ P, My ⊆ P} but we do not know 
which ones. We also know that P ⊆ E. Checking if this last inclusion may be true cor-
responds to check for the global condition. The representation of these intra-node 
constraints will be described in the sequel. 
 

 

Fig. 2. Example illustrating the notions of weak conditions  

Local Condition. The intra-node compatibility relation mpi can represent elementary 
relations like direct spatial relations (on the right, on the left, upon, under). However, 
in some cases, it cannot be enough to describe the compatibility between objects of a 
same node. For example,  one could want to verify if a region is directly or indirectly 
upon or directly or indirectly under another region. It can be noticed that this relation 
can be described by a regular expression a* ∪  b* . One could also want to limit the 
depth of the relation. For example, one region have to be under another region but it 
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must not be separated by more than two regions. It could be described by the expres-
sion b3. Then, it is necessary to describe complex compatibility relations by using a 
combination of elementary relations. These relational descriptions of object was used 
in image analysis by several authors [4][13][15].  In our context, the description of 
these relations can be done with the words of a language LCi. Its alphabet ΣTi  is made 
up of the different spatial elementary relations. The words of this language describe 
the sequences of constraints to go from an element a1 ∈ Di  to an element an ∈ Di  by 
the way of elements aj ∈ Di . As the relations are intentionally limited to relations that 
can be described by some regular expressions, LCi can be recognized by a finite 
automaton. Let LC be the language made up of the set of words that can be generated 
from the elements of the alphabet Σ T = {a1, ...an}  where a1  ...  an  are elementary re-
lations. Each language LCi  associated with a node i of the graph is a subset of the 
language LC and describes how regions can be associated to make the object of the 
node i. It is reasonable to think that LCi  is a finite set of finite words. Then, LCi can 
be recognized by a non deterministic finite automaton AFi where Σ Ti ⊂  Σ T , Σ Qi = 
{q0, ..., q ni}   is the set of states and Q Fi  ⊂  Σ Qi is the set of final states. Verifying if 
two regions E1 and E2 are compatible consists in finding if a word exists belonging to  
LCi such that it is possible to reach the region E2 from the region E1. Then, a rewriting 
system with constraint Si (LCi ) can be defined on  Di. It allows to rewrite an element 
a1 ∈ Di  in an element an ∈ Di  with respect to the language of constraint LCi. The set 
of rewriting rules Ri of Si (LCi )  is defined by: 

Ri = {lj →cj  rj | l j , rj ∈ Di,  cj ∈ Σ Ti,  c1 ...c j-1 cj c j+1 ... cn∈LCi  and  l1 *c1 c2 ...c j-1  lj }  
Finally verifying a complex intra-node constraint Cmpi  can be assimilated to solv-

ing a reachability problem and such a constraint Cmpi will be defined by:  

Definition 2.  Cmpi(a,b,Si (LCi ), Di ) ⇔  a  * Si (LCi ) b 

Global Condition. Let P be the union of all the regions belonging to the object 
represented by the node i. P is not known but we know that P ⊆ P (Di). According to 
the definition of the set E given at the beginning of the section, P ⊆ E. Building the 
set E may need some calculations and to simplify the problem we propose to use the 
relation P ⊆ P (Di) instead of P ⊆ E to apply global constraint. This choice lowers the 
level of constraint but makes constraint satisfaction checking easier. P ⊆ P (Di) 
cannot be checked because P is unknown. In an other hand the constraint on P are 
known. Then if P ⊆ P (Di) , the merging of all the regions of Di that we denote MDi , 
should be compatible with some constraints on the node i. For example: Surface(MDi 
)≥SurfaceMin (P), or Width(MDi )≥WidthMin (P) or Height(MDi )≥HeightMin(P). 

The parameter Surface(MDi), Width(MDi), Height(MDi) are easily calculated 
from the parameters of all the regions of Di. If relations like those mentioned previ-
ously (surface, width and height) are not satisfied, then the regions of Di do not satisfy 
the global  intra-node constraints and the arc consistency fails. 

2.3   Arc-Consistency Problem Applied to Over-Segmented Image 

A class of problems called arc-consistency problems with bilevel constraints (ACBC) 
is defined. It is associated with the FDCSPBC and it is defined as follows: 



218 A. Deruyver et al. 

 

Let P(Di) be the set of sub parts of the domain Di. 

Definition 3. Let (i,j) ∈ arc(G). Arc (i,j) is arc consistent  with respect to P(Di) and 
P(Dj) iff  ∀Si ∈P(Di) ∃Sj ∈ P(Dj) such that ∀v ∈Si ∃t ∈Si, ∃w ∈ Sj, Cmpi(v,t) and 
Cij(t,w) (v and t could be identical). 

Definition 4. Let P= P(D1) x .... x  P(Dn). A graph G is arc-consistent with respect to 
P  iff ∀ (i,j) ∈arc(G): (i,j)  is arc-consistent with respect to P(Di) and  P(Dj). 

The purpose of an arc-consistency algorithm with bilevel constraints is, given a 
graph G and a set P, to compute P', the largest arc-consistent domain with bilevel con-
straints for G in P 

2.4   Algorithm of Arc Consistency Checking with Bilevel Constraints 

Implementation of the Arc-Consistency Checking Algorithm with Bilevel 
Constraints. Considering the previous remarks, we adapt the AC4 algorithm 
proposed by Mohr and Henderson in 1986 [3][14] to solve the ACBC problem. We call 
this algorithm AC4BC (see [5] for the details of the algorithm). 

In AC4BC, a node belonging to node(G) is made up of a kernel and a set of inter-
faces associated with each arc which comes from another linked node. In addition, an 
intra-node compatibility relation Cmpi is associated with each node of the graph. It de-
scribes the semantic link between different subparts of an object which could be asso-
ciated with the node. As in algorithm AC4, the domains are initialized with values 
satisfying unary node constraints and there are two main steps: an initialization step 
and a pruning step. However, whereas in AC4 a value was removed from a node i if it 
had no direct support, in AC4BC, a value is removed if it has no direct support and no 
indirect support obtained by using the compatibility relation  Cmpi. The indirect sup-
ports are found thanks to the notion of interfaces. It has been proved that the AC4BC 

algorithm is correct and always terminates.  
It has been also proved that the time complexity of the cleaning step is in O(n2d) 

in the worst case and that the time complexity of AC4BC is in O(en3d2) in the worst 
case (n is the number of nodes and d is the size of the largest Domain D) 

Implementation of Intra-node Compatibility Relations. The checking of intra-node 
compatibility relations is made in two steps. The first step checks if the local intra-
node constraints are satisfied and the second step checks if the global intra-node 
constraints are satisfied. Section 2.2 has shown that intra-node spatial constraints 
(local constraints) can be easily verified thanks to a rewriting system  Si (LCi ). The 
implementation of this system can be done as follows: let LCi

n ={ω∈ LCi | | ω| ≤n }  
and SRi

n  = { u→ Si (LCi
n

 )v |u∈Di  and v∈Di }, let be GenereLC(LCi ,n) the function 
generating the set  LCi

n, let the function GenereSR( Si(LCi
n), a) generating the set of 

the possible rewritings from the element a by applying  Si(LCi
n). The algorithm is: 

 n:=1 ; reach:=false; end:=false; 
 while not reach and not end   do 
 begin 

 if  a * Si(LCi

n

)  b   then    reach:=true; 
 else begin 
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      LCi

n+1 := GenereLC( LCi ,n+1); 
      SRi

n+1 := GenereSR( Si (LCi

n+1) , a ); 
      if  SRi

n = SRi

n+1    then     end := true; 
      end 
 n:=n+1; 
 end 

The intra-node global constraints (morphological constraints) are implemented as fol-
lows: After the first step, only regions satisfying the local spatial constraints are kept 
in the kernel of the node. Then a search of all the sets of connected regions is per-
formed on the set of regions of the kernel. If a given set does not satisfy the global 
constraint associated with the considered node, all the regions of this set are removed 
from the node. 

3   Knowledge Driven Segmentation Algorithm 

Segmentation based on graph decimation process assumes that it is possible to define 
which regions are similar and which are not. Usually, the proposed method of decima-
tion use statistical criteria computed on the grey levels of regions [12]. However, it 
cannot be always enough. Sometimes, expert knowledge describing the goal (the 
morphology and the spatial relations of each object that we look for) can be helpful to 
find the best segmentation. Spatial relations may be easily described in a semantic 
graph. Then, we integrate such a semantic graph in the decimation process of an adap-
tive pyramid [8]. The key point of this decimation process is the choice of the thresh-
old deciding which regions are similar and which are not. In this study we consider 
that two regions cannot be merged if the difference of mean intensity is greater than a 
given threshold. The best threshold is the one providing a segmentation with the low-
est number of regions and which is compatible with the knowledge described by the 
semantic graph. Since the obtained segmentation can be over-segmented, it is neces-
sary to check the compatibility with the arc-consistency checking with bilevel com-
plex constraint algorithm. The algorithm follows an iterative process. While the ob-
tained segmentation provides an arc-consistent graph, the threshold is incremented. If 
the graph becomes un-consistent, we consider that the correct segmentation has been 
obtained with the previous threshold.  
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The problem of the uniqueness of the solution have to be considered. In order to 
ensure this uniqueness, the constraints imposed in the semantic graph are defined in 
such a way that they are true on any subparts of an object as well as on the whole ob-
ject. Then, if the graph is consistent  at a given level of segmentation, it is consistent 
for any sub-level of over-segmentation. 

4   Experiments 

The algorithm has been tested on synthetic image representing a flower (see Figure 1-
a) described by a semantic graph (see Figure 1-b). This graph represents the spatial re-
lationship (on the left/on the right, on the top/under, etc…) of the different subparts 
(stem, leaves, petals, center) of a flower. The intra-node spatial constraints are of two 
kinds: “on the top/under” with a depth of two for the stem and “around of”  with a 
depth of one for the other objects. An intra-node morphological constraints has also 
been imposed for the stem which must be a thin vertical object.  

The synthetic image was intentionally over-segmented (see Figure 4-a) and it is 
made up of 32 regions. The aim is to retrieve the initial flower by merging the re-
gions. Thanks to the arc consistency checking, the stem has been completely identi-
fied and the sleeves are correctly separated from the petals (see Figure 4-c). The re-
gions belonging to the heart of the flower are identified as well, even if two petals are 
merged in the heart of the flower. The curves of  the Figure 5 show that the threshold 
value equal to 32 gives the best segmentation with a low number of regions. If this 
value is increased the leaves are merged with the stem and the semantic graph be-
comes un-consistent.  

Other experiments have been made on pictures of human faces. The aim is to rec-
ognize subparts corresponding to hair, eyes, mouth, skin and background. Although 
the floor of the pyramid can be at the level of pixels, it is more convenient to start 
with regions so long as they are small enough to avoid an unwilled sub-segmentation. 
The computation of the watersheds is a good choice to obtain these small regions. The 
semantic graphs is made up of 6 nodes and 63 arcs and 5 different kinds of spatial re-
lations are used. On the first example (see Figure 7, 1st row) the graph is consistent 
until the threshold value is equal to 53. With this value we obtain a segmentation 
made up of 192 regions and each region are correctly labeled. With the just higher 
threshold, the right eye is merged with the skin and the graph becomes un-consistent. 
On the second example (see Figure 7, 2nd row) the threshold which gives the best un-
derstandable (arc consistent) segmentation is 71.  
 
 

a b  c  

Fig. 4  a. over segmented image, b. the four stages of the pyramid with a threshold equal to 32 
c. the labeled image after arc-consistency checking 

.
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Fig. 5. Evolution of the number of regions and the number of labels with respect to the applied 
threshold 

 
Fig. 6. Semantic graph describing a face 
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Fig. 7. Original image. b. segmentation obtained with a watershed algorithm. c. final segmenta-
tion with the optimal merging threshold d. image obtained with the just higher merging thresh-
old: the semantic graph becomes un-consistent 

5   Comments and Conclusion 

To improve the process of image segmentation which is far from being resolved for 
the majority of images, our idea is to drive the segmentation process with a semantic 
control. The possibility to represent with graphs, spatial relations between regions and 
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spatial relations between subparts of an object is the key point of our approach. The 
semantic checking of the pertinence of the value of a given criterion chosen to drive 
the decimation process inside an adaptive pyramid, allows to select the best value. 
This choice gives an optimal result with the chosen criterion of segmentation. To our 
knowledge, it is the first time that a decimation process in an adaptive pyramid is 
driven by semantic criteria. The design of the semantic graph is in our case a crucial 
step. This step could become automatic if the endeavor of others group as [10] who 
try to extract automatically model graph from a set of images may produce reliable 
and efficient semantic graph representation of many kind of common objects.  
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A Graph-Based Concept for Spatiotemporal
Information in Cognitive Vision�
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Abstract. A concept relating story-board description of video sequences
with spatio-temporal hierarchies build by local contraction processes of
spatio-temporal relations is presented. Object trajectories are curves in
which their ends and junctions are identified. Junction points happen
when two (or more) trajectories touch or cross each other, which we in-
terpret as the “interaction” of two objects. Trajectory connections are
interpreted as the high level descriptions.

1 Introduction

Even though there is no generally accepted definition of cognitive vision yet, pre-
sumptions about the cognitive capabilities of a system can be made by comparing
it’s results with that of an entity, already ’known’ and accepted to have these
capabilities, the human. Also, the Research Roadmap of Cognitive Vision [15],
presents this emerging discipline as ’a point on a spectrum of theories, models,
and techniques with computer vision on one end and cognitive systems at the
other’. A conclusion drawn from the previous, is that a good starting point for
a representation would bring together the following:

– enable easy extraction of data for human comparison;
– bridge together high and low level abstraction data used for cognitive and

computer vision processes.

After ’watching’ (analyzing) a video of some complex action, one of the things,
that we would expect a cognitive vision system to do, is to be able to correctly
answer queries regarding the relative position of occluded objects. Let us take
the video1 given by a simple scenario of two black cups and a yellow ball and
describe the scene in simple English words (see the description in Table 1). The
description contains: objects: hand, cup, ball, table ; actions: grasp, release,
move, shift etc., and relations: to-the-left, to-the-right, in-front-of etc.

� Supported by the Austrian Science Fund under grant FSP-S9103-N04.
1 http://www.prip.tuwien.ac.at/Research/FSPCogVis/Videos/Sequence 2 DivX.avi

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 223–232, 2005.
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Later, we could use this kind of description to compare the results given by
the system with ones made by humans. While observing a dynamic scene, an
important kind of information is that of the change of an object’s location, i.e.
the change of topological information. In most of the cases, this kind of change is
caused by an active object (e.g. agent: hand, gravity, etc) acting on any number
of passive objects (e.g. cup, ball, etc.). Queries like ’where is the ball?’ could be
answered if the history of topological changes is created.

From all the work done in the domain of qualitative spatial and tempo-
ral information we would like to enumerate the following: Interval calculus [1]
is used in systems that require some form of temporal reasoning capabilities.
In [1] 13 interval-interval relations are defined: ’before’, ’after’, ’meets’, ’met-by’,
’overlaps’, ’overlapped-by’, ’started-by’, ’starts’, ’contains’, ’during’, ’ended-by’,
’ends’ and ’equals’. In [13], motivated by the work in [1, 7, 8], an interval calculus-
like formalism for the spatial domain, the so called region connection calculus
(RCC) was presented. The set of 8 region-region base relations defined in [13]
(RCC − 8) are: ’is disconnected from’, ’is externally connected with’, ’partially
overlaps’, ’is a tangential proper part of’, ’is non-tangential proper part of’, ’has
a tangential proper part’, ’has non-tangential proper part’, and ’equals’. A more
expressive calculus can be produced with additional relations to describe regions
that are either inside, partially inside, or outside other regions (RCC − 15).
Different graph based representations have been used to describe the changes/
events in a dynamic space. In [6] graphs are used to describe actions (vertices
represent actions). Graphs are also used in [2], but here vertices represent ob-
jects. Balder [2] argues that arbitrary changes can be best described by state
approach: the state of the world before and after the change characterizes the
change completely. The Unified Modeling Language, in its state diagram, also
defines a graph based representation for tracking temporal changes. The General
Analysis Graph (GANAG) [14] is a hierarchical, shape-based graph that is build
and used in order to recognize and verify objects. The analysis graph can be seen
as a ‘recipe’ for solving industrial applications, stating which kind of decisions
have to be made at which stage [14].

In Section 2 we give the spatiotemporal story-board of the video sequence.
In Section 3 we describe two methods of contraction of trajectory of movements:
first the spatial contraction followed by a temporal contraction (Section 3.1) and
than the temporal contraction followed by a spatial contraction (Section 3.2).

2 Spatiotemporal Story Board of a Film

The scene history is a description of the actions and spatial changes in the
scene. It should depict the spatiotemporal changes in the scene, in a way that
could be used to create a human-like description (similar to the one presented
in Section 4). For this we propose a graph based representation where vertices
represent spatial arrangement states and edges represent actions (see Figure 1a).

Each vertex contains a topological description of the spatial arrangement of
the objects in the scene, that results through a transition from a previous state,
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Grasp Lift

Lift (L−hand,L−cup)

Lift (R−hand,R−cup)

a) b)

Fig. 1. a) History graph. b) Parallel actions. � Hand, © Ball, � Cup

by applying the actions that link it to the current. What we refer to as objects
are actually detected relevant visual entities, which in the ideal case would be
objects or, groups of objects in a “special” physical relation e.g occluding, con-
taining, etc. Vertices are added when the topological description of the spatial
arrangement changes. There are no vertices that contain (identify) the same
topological description (scene state). If the scene enters a state, which has a
topological description identical to one of the descriptions already identified by
a vertex in the scene history graph (it has been in the same state in the past),
then an edge/edges from the vertex identifying the previous state, to the existing
vertex should be added.

Edges are associated with actions and identify the type/class of the action.
Also, each edge links to the objects (from the source and destination state vertex)
involved in this particular action. If an object taking part in the action cannot
be identified as one of the known objects, a new instance should be created and
the edge linked to it. Later on, through reasoning, the new created instance, can
be identified as a previously known object or a new one (or some presumption
can be made, using certain criteria). In case of simultaneous actions, more than
one edge is used to connect 2 vertices. Each edge should describe the actions
that happened in parallel. (Figure 1b) shows how to describe 2 hands lifting 2
cups at the same time)

The representation of the scene history as a graph allows us to create higher
level abstractions. A straight forward example results from the ‘re-usage’ of
vertices (disallowing multiple vertices identifying the same state). Imagine the
scenario of a hand grasping and releasing the cup 10 times in a row. Besides
saving space by not adding a big number of additional vertices, by identifying
cycles, we can easily determine repeated actions and find the shortest way from
one configuration to another. Higher level abstractions replace more complex
subgraphs containing parallel actions and long sequences of actions resulting in
small or unimportant changes for the objects in the system’s attention.

A type of information that can be directly extracted from the spatiotemporal
graph is the one of ‘all known actions’. This information can be represented by
a directional graph in which vertices represent unique classes of objects part
in any previous action and edges represent simple actions that can involve the
connected vertices (usually actions that a class of objects can perform on another
class). E.g.: a hand can lift, move, grasp, release, etc. a cup.

We can observe that, in time, for a fixed set of classes of objects involved, if
the actions vary enough, the graph of ‘all known actions’ will converge to the
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graph of ‘all possible actions’ and the presented spatiotemporal history graph,
will converge to the graph ‘of all possible states’ (The latter is something that
should be avoided, because storing/remembering everything up to the smallest
details is guaranteed to sooner or later cause time and memory issues).

Another type of information, that is obtained directly (e.g. tracking) or
through reasoning, is that of an object occluding or containing other objects
(totally or partially, but still unrecognizable by the detection level). To store
this type of information, a relabeling of the class of the occluding object should
be done i.e. a cup that has been found out to contain a ball should be labeled
‘cup with ball inside’.

3 Contraction in Spatiotemporal Space

The idea here would be to contract in 3D (2D space + time) along ’the trajectory’
of the movements. Every frame could be represented by a region adjacency graph.
In order to stretch this into time, these region adjacency graphs (region adjacency
combinatorial maps) should be matched to each other, i.e. the region adjacency
graph at time t is matched with the one in t+1 and so on. In this sense we could
define a ’trajectory’ of each region This trajectory becomes a curve in 3D and
with the techniques analogous with that of contraction of a 2D curve pyramid
in [11], we can contract regions adjacent along this curve to produce the more
abstract representation of the scene, e.g. where the movement started, where it
ended etc (Figure 2).

If the analyzed scene has a structured background, then, depending on it’s
granularity, this is enough to detect movement using only topological informa-
tion. On the other hand, this will increase the number of consecutive frames that
differ with respect to topological relations. To reduce the abundance of topologi-
cal states, to a set containing the most relevant ones, a set of adaptive pyramids
is used. There are no constraints regarding the time intervals between 2 con-
secutive states. Actually, it is expected that in most of the cases where natural
movement is present (not robots repeating some predefined action) these time
intervals will differ quite a lot.

In subsections 3.1 and 3.2 we present two approaches, to the problem, which
basically differ only in the order in which contraction in the spatial and tempo-
ral domains, is done. The first, avoids the difficult problem of graph matching
by creating pyramids in the first step and then doing the matching using the
pyramids. The second, while needing graph matching to be done, should have a
lower memory usage. Moreover, in the ideal case, the resulting top level of the 2
approaches should be the same.

3.1 Spacial Contraction Followed by Temporal Contraction

For each frame, whose topological description is different from the one of the
previous frame, a space-contraction pyramid is build, that preserves only the
spatial information required by the higher functionality levels (i.e reasoning)
and by the time-contraction. A space-contraction pyramid is a pyramid where
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Fig. 3. Space time contraction

elements, from the same scene state, neighbored from a spatial point of view are
contracted, and a time-contraction pyramid is a pyramid where elements, neigh-
bored from a temporal point of view (consecutive scene states) are contracted.

To obtain the base level of the time-contraction pyramid from the set of space-
contraction pyramids a matching step has to be performed (Figure 3). Each 2
consecutive pyramids (from a chronological perspective) have to be matched,
and the vertices that represent the same object/visual entity should be linked
by an edge (if it is possible i.e. if the same object/visual entity exists in both
structures - existed in both frames). If a certain object/visual entity, that exists
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in one of the pyramids, does not exists in the other (occlusion, moved out of the
field of view, etc.), no connecting edge can be created, thus obtaining a trajectory
endpoint. If similar entities disappear and reappear at different time intervals, it
will be the job of the reasoning part to decide whether it was the same instance
of the same class or not.

The base level of the time-contraction pyramid contains a vertex for each
of the frames in the source video, that differ in topological relations from the
previous frame. Each vertex will contain the space-contraction pyramid for the
region adjacency graph of the respective scene state. These vertices are linked
together in a chronological manner i.e. each vertex is linked to the one of the
previous and next frames. Also, as a result of the pyramid matching process
mentioned before, the vertices from the consecutive space-contraction pyramids
are linked together, showing the trajectories of the regions from the first through
the last frame. For example: take the topological descriptions for each frame and
represent them in a 3D space, where one of the dimensions is time, and the
other 2 are used to represent the planar region adjacency graphs. If for every 2
consecutive graphs, the vertices representing the same object/visual entity are
linked together by an edge, then following these inter-state connection edges will
produce the regions trajectory in 3D space.

Each level of the time-contraction pyramid is a chronologically ordered list of
space-contraction pyramids, each element describing the topological relations of
a certain scene state. The space-contraction step reduces the spatial information
in areas that are not of our interest. The purpose of the time-contraction pyra-
mid is to skip the unnecessary frames caused by the presence of the structured
background (which is needed for movement detection using only topological in-
formation).

3.2 Temporal Contraction Followed by Spatial Contraction

The base level of the time-contraction pyramid contains a vertex for each of the
frames in the source video, that differ in topological relations from the previous
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frame (Figure 4). Each of these vertices contains the region adjacency graph
(RAG) for the respective frames. Through a preliminary process of matching,
each vertex in a region adjacency graph should be connected with the ver-
tex(vertices), from the two neighboring graphs, that represent the same ob-
ject/visual entity (if it is possible i.e. if the same object/visual entity exists in
the neighboring region adjacency graphs frame). In other words, the base level
of the pyramid is the discretized evolution of the region adjacency graph of the
presented scene with the exception that identical consecutive states are merged
into a single state.

If we would represent the base level structure in a N dimensional space (3D
for 2D state descriptions + time) we would see that we have obtained curves
representing the trajectories of the different regions analyzed. A line segment
parallel to the time axis, will denote a static region through the respective time
interval. Each level of the pyramid is made out of a sequence of region adja-
cency graphs. Each vertex in a region adjacency graph should be connected with
the vertex(vertices), from the two neighboring graphs, that represent the same
object/visual entity.

With each new level added to the time contraction pyramid, the number of
topological states decreases. After reducing the number of topological states, a
contraction of topological information for each state can be considered (at this
level the detail regarding the background should not be important any more).

There are 2 ways that can be considered for doing this:

– contract each state independently (create a pyramid for each of the topolog-
ical states at the top level of the time-contraction pyramid)

– contract all the graphs together (allow contraction kernels to span along
more than one state graph)

3.3 Spatiotemporal Entities

The trajectories of (moving) objects (visual entities resulted from segmentation
and tracked through the whole time span) represent curves connecting start, end
and the junction points. Junction points happen when two (or more) trajectories
touch or cross each other, which we interpret as the ‘interaction’ of two objects.

Following the work of Kropatsch [11] the trajectory, which is a curve in 3D,
and the cells, which are vertices of the graph, can be related as follows:

0-cell - an empty cell (no trajectory motion within the receptive field)
1-cell - the trajectory starts or ends in this cell (it leaves or enters the cell and

intersects only once the boundary of the receptive field)
2-cell - the trajectory crosses the receptive field (it intersect twice the boundary

of the receptive field).
*-cell - a cell where more than one trajectory meet, a junction cell (the bound-

aries of the receptive field are intersected more than twice).
1-edge - trajectory intersects the connected segment boundary of the receptive

field.
0-edge - no trajectory intersect the boundary of the receptive field.
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It is assumed that: 1) the cells are consistent, i.e. if a trajectory crosses a bound-
ary both cells adjacent to this boundary are in correct classes, and 2) all trajec-
tories are well distinguishable in the base, e.g. there are no more than one single
curve in one single cell of the base (except at *-cells).

3.4 Selection of Contraction Kernels

Contraction should be done along the trajectory, like in curve pyramids in 2D [11,
5]. In order to undertake the contraction process, the contraction kernels must
be selected. The selection rules are 1-cells and *-cells must always survive. *-cells
are not allowed to have children. This prevents the area of unclear information2

from growing. Branches of contraction kernels follow the trajectory if possible
and are selected in following order: 1-cells, 2-cells, 0-cells. Receptive fields are
merged as follows:

1. A 1-cell can merge with its adjacent 2-cells, then with any adjacent 0-cell
and will become an 1-cell again;

2. a 2-cell can merge with both adjacent 2-cells or with any adjacent 0-cell and
remains a 2-cell;

3. a 0-cell can merge with any adjacent cell and remains a 0 cell if it is merged
with another 0-cell.

If the rules do not determine the contraction kernels the random selection
methods [12, 10, 9] are applied. Applying these rules, the trajectory remains a
simply connected curve in spatiotemporal space. At the top level (where no more
contraction is possible) we find only 1-cells and *-cells giving on overview of all
movements, when and where is started, when and where the cup was grasped,
and this is compact for all types.

4 Example

A simple, human language like description of a scene with two cups and a yellow
ball is shown in Table 1. Even though the frame numbers are given, they are
only for orientation purposes and can be easily eliminated from the description
by putting the adverbial for example ’next’, ’after that’, ’then’ etc. The pre-
vious description would be represented in the following way (see Figure 5) in
the resulting top level of both approaches. The initial configuration contains 3
objects: 2 cups and 1 ball. So we initialize the objects structure with the fol-
lowing: cup(1), ball and cup(2). (The numerical ids in parenthesis are present
to distinguish the two cups, identification could be done in many other ways.
Also in the same interest, vertices are numbered to identify different positions in
time.) Vertex(0) in Figure 5 depicts the initial configuration. The next vertices
and edges are as follows:
1. action move: creates object hand and adds vertex(1);
2. action grasp: links to objects hand and cup(1) and adds vertex(2)

2 trajectory may intersect or may be just close to each other.
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Table 1. Scene description

cell
type

Frame Description cell
type

Frame Description

0 16–21: hand from left * 91: grasps the same cup again
* 22: grasps left cup * 87–90: releases it and moves up and

down
* 27–30: moves it over ball * 85–86: moves it to the right (but

left of the right cup)
* 31: releases cup * 84: grasps it
* 32: grasp same cup (again) * 76–77: moves to the right cup
* 33–36: shifts it to the left * 75: releases it
* 37: releases cup * 71–74: shifts it to the right (but still

to the left of the right cup
* 38–40: moves to right cup * 70: grasps it
* 41: grasps right cup * 67–69: moves to the left (most) cup
* 42–58: shifts right cup in front of

left cup (hiding left cup Fr
46–54) to the left of the orig-
inal cup

* 66: releases it

* 58: releases cup * 63–65: shifts it to the right
* 59–61: moves to the other cup * 62: grasps it

· · · · · · · · ·

Move Grasp

(0)
(1) (2)

Lift Move Move Release

(4)(3) (5) (6)

Fig. 5. Example history graph. � Hand, © Ball, � Cup

3. action lift: links to objects hand and cup(1) and adds vertex(3)
4. action move: links to objects hand and cup(1) and adds vertex(4)
5. action move: links to objects hand and cup(1) and adds vertex(5)
6. action release: links to objects hand and cup(1) and adds vertex(6)

Although the presented approaches would work in a different way (one would
first try to identify the important visual entities and then key events, while the
other would start with the key events and then continue with key entities), the
expected result is the same.
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5 Conclusion

This paper presents a concept relating story-board description of video sequences
with spatio-temporal hierarchies build by local contraction processes of spatio-
temporal relations. Since object trajectories are connected curves we identify
their ends and junctions and their connections as the high level descriptions.
Junction points happen when two (or more) trajectories touch or cross each
other, which we interpret as the ‘interaction’ of two objects. We propose to
derive them similar to curve pyramid in 2D [11, 5], For the implementation we
plan to use the concept of combinatorial pyramids in 3D [3, 4].
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Approximating the Problem, not the Solution:
An Alternative View of Point Set Matching

Tibério S. Caetano and Terry Caelli

National ICT Australia, Canberra ACT 0200, Australia

Abstract. This work discusses the issue of approximation in point set
matching problems. In general, one may have two classes of approxi-
mations when tackling a matching problem: a representational approx-
imation, which involves a simplified and suboptimal modeling for the
original problem, and algorithmic approximation, which consists in us-
ing suboptimal algorithms to infer the assignment. Matching techniques
in general have relied on the second approach: to keep a complete model
of the original problem and use suboptimal techniques to solve it. In this
paper, we show how a technique based on using exact inference in simple
graphical models, which is an instance of the first class, can significantly
outperform instances of techniques from the second class. We give the-
oretical insights of why this happens, and experimentally compare our
approach with the well-known Shapiro and Brady and Christmas et al.
methods, which are exemplars of the second class. We perform experi-
ments with synthetic and real-world data sets, which reveal a significant
accuracy improvement of the proposed technique both under point po-
sition jitter and size increasing of the point sets. The main conclusion
is that techniques based on optimal algorithms with appropriate sub-
optimal representations may lead to better results than their counter-
parts which consist in using optimal representations, but approximate
algorithms.

1 Introduction

The point set matching problem consists in finding correspondences between two
point sets, which may be one-to-one or also many-to-one [1, 2], and arises in a
variety of real world vision tasks such as stereo vision, registration, model-based
object recognition and the like. In any real vision problem we are faced with
inexact point set matching, or matching under structural corruption, which is
known to be an NP-hard problem [3]. As a result, one must rely on approximate
techniques do derive the “best” assignment in some suboptimal sense. Several
approaches for solving matching problems, and in particular the inexact point set
matching problem, have been proposed along the years [4]. Major representatives
are spectral methods [5, 6] and relaxation labeling methods [7, 8]. These families
of techniques consist in encoding all the available information into some complete
representation of the problem and subsequently using approximate algorithms
to derive the assignment. Several limitations have been reported with respect

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 233–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to spectral methods when structural corruption is present and with respect to
relaxation methods when matching large point sets [1, 6, 9, 10].

This paper shows how a shift in point of view can lead to an alternative
method that overcomes many of the limitations existent in some spectral and
relaxation methods. Essentially, instead of using an optimal representation and
an approximate algorithm, we do the opposite. We model the structure of points
by a sparse representation that deliberately disregards a particular set of rela-
tional information that is actually available. In other words, we approximate the
problem. The reason for that becomes clear in the next step: by taking advan-
tage of this sparsity, we are able to apply an optimal algorithm to derive the
best assignment. As a result, we advocate in favor of approximating the problem
instead of the algorithm for solution.

For performance evaluation, we conducted experiments with synthetic and
real world data sets, where we compared the proposed approach with traditional
versions of spectral and relaxation methods, namely the Shapiro and Brady
spectral method [5] and the Christmas et al. relaxation method [8]. Results
indicate that the accuracy of the results obtained with the proposed technique
significantly exceeds that obtained by the alternative techniques, either under
structural corruption by point position jitter or under augmentation of the point
set sizes.

2 Problem Definition

We consider the problem in, R
2, of finding the subset of an S-sized point set

(the codomain pattern) that best matches another point set (the domain pat-
tern) having T points, where T ≤ S. There may or may not exist distortions
due to noise, but if there are, we assume no prior knowledge of the type of noise.
We restrict the matching to be invariant up to isometries, so we do not consider
scaling. The only constraint enforced in the mapping is that it must be a to-
tal function: every point in the domain pattern must map to one point in the
codomain pattern (but the opposite may not hold).

3 The Model

The basic idea of the modeling strategy is to consider an undirected probabilistic
graphical model (a Markov random field) where the nodes are points in the do-
main pattern and their possible realizations are points in the codomain pattern.
In order to fully specify a graphical model, it is necessary to define (i) the poten-
tial functions and (ii) the connectivity of the model [11]. We start by formally
specifying the model and introducing the potential functions.

3.1 Potential Functions

The cardinalities of the domain and codomain pattern sets are denoted, respec-
tively, by T and S. Each point di in the domain is associated with a vertex of
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Fig. 1. An example of a pairwise mapping. An appropriate potential function should
penalize more severely mappings for which |yd
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Fig. 2. The kernel structure of the graphical model

a graph Gd, and each point ck in the codomain is associated with a vertex of a
graph Gc. The relative distance between a pair {di1 , di2} of points in the domain
pattern is denoted as yd

i1i2
. Analogously for the codomain pattern, we have that

yc
k1k2

is the distance between points ck1 and ck2 . These distances are seen as edge
weights. In this formulation, point pattern matching turns out to be a weighted
graph matching problem.

The model formulation consists, initially, in defining each of the T vertices
in Gd as a random variable that can assume S possible values (discrete states),
corresponding to the vertices in Gc. Note that in this formulation the solution to
the problem (the best match) corresponds to finding the most likely (the best)
realization of the set of random variables.

Figure (1) illustrates a pairwise map and a possible measure which is relevant
in order to construct the potential functions (|yd

i1i2
− yc

k1k2
|).

Since each node in the domain graph can map to S different nodes in the
codomain graph, each pair of nodes can map to S2 different pairs in the codomain
graph. Figure (2) illustrates the kernel structure of our model: a pairwise clique,
where each random variable represents a point in the domain graph which in
turn can assume a set of S possible realizations (which themselves correspond
to points in the codomain graph).

The sample space for this clique has S2 elements, corresponding to all pos-
sible combinations that a pair of points in the domain graph can map to in
the codomain graph. A potential function is a function that associates to each
element of the sample space a positive real number. In our case, the only require-
ment that the potential function must obey is that its value must be as higher as
more similar are the distances of the mapped edges, as illustrated in Figure (1).
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Formally, we can specify the potential function by

ψij;kl = p(Xi = xk|Xj = xl), (1)

or, in matrix form, for each pair {Xi, Xj} in Gd, we define

ψij = ψij(Xi, Xj) =
1
Z

⎛⎜⎝S(yd
ij , y

c
11) . . . S(yd

ij , y
c
1S)

...
. . .

...
S(yd

ij , y
c
S1) . . . S(yd

ij , y
c
SS)

⎞⎟⎠ , (2)

where ya
bc denotes the edge weight between vertices with indexes b and c in

graph Ga. Z is a normalization constant that equals the sum of all elements in
the matrix, in order to keep ψij compatible with a probability distribution. S is
a similarity function that measures the compatibility of the two arguments. We
use here the Gaussian function,

S(yd
ij , y

c
kl) = exp

(
− 1

2σ2 |yd
ij − yc

kl|2
)

. (3)

This “proximity measure” is needed in order to model the uncertainty due to
the presence of noise. Obviously, its maximal value must be reached when there
is no noise (yd

ij = yc
kl).

Having specified the potential functions, it remains to be determined the
connectivity of the graphical model: which nodes will be neighbors in the model?

3.2 Connectivity

We have derived elsewhere [2, 4] a particular connectivity of the graphical model
(a sparse graph) which has a very unique property: it is provably optimal in
the particular case of exact matching. By optimal we mean the fact that the
optimization problems over this particular sparse graph and over the fully con-
nected graph are one and the same. This is important, because the optimization
problem in the sparse graph can be solved in polynomial time, whereas the one
over the complete model is NP-complete [4]. This equivalence holds strictly only
for exact matching, and it is still an open issue to determine theoretically how
close to optimal is the solution for inexact matching problems. Nevertheless,
there is experimental evidence that for small to moderate noise the results are
impressively good [4].

Here we use this particular subgraph as the connectivity pattern for the
Markov random field under consideration. The graph topology is depicted in
Figure (3).

The resulting graph is technically a 3-tree [12], which is a graph that arises
by adding new nodes that are connected to precisely 3 existent nodes (these 3
nodes must form a clique, i.e. every pair must be connected). In the example in
Figure (3), X1, X2 and X3 are the 3 “reference” nodes to which the additional
T − 3 nodes are connected.

Given the graph connectivity and the pairwise potential functions, the model
is defined. The last step then consists in inferring what is the most likely joint
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X X X

XXX

1 2 3

4 5 TX

Fig. 3. A 3-tree graphical model. Each of the T nodes is a random variable represent-
ing a point in the domain graph. Each variable can assume S possible realizations,
corresponding to points in the codomain graph

3X 4X3X1 X2 X 5X3X1 X2

X3X1 X2

X TX3X1 X2

X3X1 X2

XXX1 X2 T−1

Fig. 4. The Junction Tree obtained from the model in Figure (3)

realization of all the random variables for the given connectivity and set of
potentials of the model. This is precisely the MAP inference problem in this
model, whose solution represents the best assignment in the point set matching
task and is described in what follows.

3.3 MAP Computation

The Junction Tree framework provides a set of deterministic algorithms for exact
inference in arbitrary graphical models [11, 13]. Here we use an algorithm from
this framework in order to find the optimal MAP estimate for the model in
Figure (3). A Junction Tree of a graph is another graph where (i) the nodes
correspond to the maximal cliques of the former graph (a maximal clique is
a clique which is not a proper subset of another clique) and (ii) the running
intersection property is satisfied. This property states that all the nodes in the
path between any two nodes in the Junction Tree must contain the intersection
of these two nodes. It is known that the condition for the existence of a Junction
Tree is that the graph must be chordal, or triangulated [13]. A chordal graph is
a graph with no chordless cycles1. The 3-tree is a chordal graph, and this allows
us to use the Junction Tree framework to calculate the MAP estimate of the
random variables in the model.

1 A chord in a cycle is an edge between two non-consecutive nodes in the cycle.
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Figure (4) shows a Junction Tree obtained from the model in Figure (3).
The nodes of the Junction Tree are denoted by circles in which are listed the
nodes of the original graph that correspond to the respective maximal cliques.
The rectangles are the so-called separators, that contain the intersection of the
nodes to which they are linked. Both the nodes and the separators are endowed
with “clique potentials”, and the optimization process consists in updating these
potentials, as explained below.

In this paper we applied the Hugin algorithm [13], an instance of the Junc-
tion Tree framework, to accomplish exact inference in the 3-tree model shown in
Figure (3). The complexity of Junction Tree using Hugin in our 3-tree model is
O(S4T ). As a result, the complexity on S and T is polynomial. The Hugin algo-
rithm essentially works in two steps: initialization and message-passing. During
the initialization, the clique potential of each separator (Φ) is set to unity and the
clique potential of each node (Ψ) is introduced (see subsection 3.1). These last
clique potentials are assembled as an element-by-element product of the pairwise
potentials (see Eq. 2) in the respective clique. For example, for the 3-tree model,
Ψ(xi, xj , xk, xl) = ψ(xi, xj)ψ(xi, xk)ψ(xi, xl).

The second step is the message-passing scheme, which involves a transfer of
information between two nodes V and W in a systematic way until every pair of
nodes in the Junction Tree has participated in the process [11]. This operation
is defined by the following equations:

Φ∗
S = max

V \S
ΨV Ψ∗

W =
Φ∗

S

ΦS
ΨW

where we used standard notation for the current and updated (∗) versions of the
separator potentials (Φ) and the clique potentials (Ψ). The first equation is a
maximization over all sub-configurations in ΨV that do not involve the singleton
nodes which are common to ΦS and ΨV . The second is simply a normalization
step necessary to keep ΨW consistent with the updated version of ΦS (division
and multiplication are performed element-by-element). The above potential up-
date rules must respect the following protocol: a node V can only send a message
to a node W when it has already received messages from all its other neighbors.
If this protocol is respected and the equations are applied until all clique nodes
have been updated, the algorithm assures that the resulting potential in each
node and separator of the Junction Tree is proportional to the (global) maximum
a posteriori probability distribution of the set of enclosed singleton nodes [11].
The constant of proportionality is guaranteed to be the same for every node,
what implies that the mode of the local potentials will correspond to the MAP
estimate. In our particular case, we need the maximum probability for each sin-
gleton, what can be obtained by maximizing out the remaining 3 singletons in
each of the nodes. The indexes for which the final potentials are maximum are
considered the vertices in Gc to which the corresponding vertices in Gd must be
assigned.
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4 Experiments and Results

We have carried out two sets of experiments, one with synthetic point sets and
another with real-world data. In both of them, we compare our technique (de-
noted simply as JT) with the probabilistic relaxation labeling version described
in [8], denoted as PRL, as well as with the spectral method of Shapiro and
Brady [5], denoted as SB. These two methods encode all the pairwise distances
in their model representation, whereas our method only encodes those distances
that correspond to the 3-tree topology. On the other hand, our approach uses
a non-iterative algorithm which is optimal, whereas the other two are based on
approximate and heuristic algorithms. Results show how these different approx-
imation principles affect accuracy in point set matching.

4.1 Synthetic Data

In the experiments with synthetic data, we generated random points according
to a bivariate uniform distribution in the interval x = [0, 1], y = [0, 1]. We carried
out two experiments: one with graphs of equal sizes and another with graphs
with different sizes (the SB method is not suited for different graph sizes). In
the first experiment, with equal sized graphs, we used graphs of sizes (10,10),
(20,20) and (30,30) nodes. Then, for each of these 3 instances, we perturbed the
codomain pattern with progressive levels of noise in the position of the nodes
(white Gaussian noise with varying standard deviation). This setting allows us
to have an idea of the relative performances both under the augmentation of the
graph sizes and under progressive structural corruption of the patterns. Figure
(5)-left shows the obtained curves under these experimental conditions.

The graphs show that differential noise increasing has a very different impact
on SB when compared to JT and PRL. JT and PRL performances are much
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Fig. 5. Left: performances of JT, PRL and SB when the noise (position jitter) increases,
for various sizes of the graphs (T = S in this experiment). Right: Performances of JT
and PRL when the noise (position jitter) increases, for fixed size of the domain graph
(T ) and various sizes of the codomain graph (T + N = S)
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less affected than that of SB for a same amount of incremental noise. Also, it is
possible to note that scaling up the sizes of the graphs, for small levels of noise
(std = 0 − 1), practically does not affect the performance of JT, whereas the
performances of PRL and SB are significantly affected. This may suggest that
the proposed technique may be a serious alternative to these other approaches
in circumstances where the noise involved is not high. For larger, but still mod-
erate amount of noise (std = 1 − 4), the proposed technique still dominates
the others. It is clear however that PRL has similar or possibly superior per-
formance for extremely high levels of noise. This is probably due to the fact
that under severe noise the 3-tree approximation becomes poor. However, note
that severe stochastic perturbation is not a common issue in point set matching
problems. Usually, in real applications like stereo matching, shape matching or
registration, the point sets differ essentially by some isometric, affine or projec-
tive transformation (possibly together with a non-linear deformation), but the
stochastic perturbation in the position of the points is itself small or at most
moderate [4].

In the second experiment with synthetic point sets, we kept constant the size
of the domain point set (10 nodes) and varied the size of the codomain point
set (from 10 to 30 nodes in steps of 5). The introduction of noise by position
jitter was analogous to the equal-size graphs experiment described above. In
this experiment, we only compared JT with PRL, since SB is not suited for
graphs with different sizes. Figure (5)-right shows the graphs corresponding to
this experiment. In this experiment, it is clear that PRL does not perform well
when the sizes of the point sets are significantly different. It is also possible to
notice the fact that for larger graphs the proposed technique has a very superior
performance for small levels of noise. A glimpse of this fact was available in the
previous experiment, but it is much more evident in this new one.

Fig. 6. Images from the CMU house data set (from left to right and top to bottom:
images 1, 11, 21, 31, 41 and 51)
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Table 1. Matching results (correct correspondences out of 29)

Image pair 1 - 11 11 - 21 21 - 31 31 - 41 41 - 51 1 - 21 11 - 31 21 - 41 31 - 51

JT 29 29 29 29 29 28 28 29 29
PRL 29 29 29 29 29 28 28 28 28
SB 19 16 18 23 23 17 16 15 14

Image pair 1 - 31 11 - 41 21 - 51 1 - 41 11 - 51 1 - 51

JT 28 28 29 27 25 25
PRL 28 26 27 26 26 25
SB 21 14 14 11 13 7

4.2 Real-World Data

In the real-world experiments, we performed comparisons of the algorithms using
the CMU house sequence, as done in [1]. Figure (6) shows the images used in
the experiments.

A total of 6 images were used in the experiments, as shown in Figure (6). In
total, 29 landmark points were manually marked in each of the images. Then
we run the three algorithms (JT, PRL and SB) in several pairs of them, in a
systematic way, described as follows. First we matched pairs that are consecutive
in Figure (6) (1-11, 11-21, 21-31, 31-41, 41-51). Then we matched pairs separated
by a single image (1-21, 11-31, 21-41, 31-51), by two images (1-31, 11-41, 21-51),
by three images (1-41, 11-51) and finally by four images (1-51). For each of
the experiments, the amount of correct correspondences for each technique was
recorded and is shown in Table 1.

5 Discussion

A general understanding of the results is possible if we pay attention to a few key
observations. PRL is an heuristic iterative optimization procedure that for prob-
lems with big search spaces may not converge in a feasible amount of iterations
(even when it does, it reaches only a local optimum). In fact, in all experiments
we have used 200 iterations for PRL, what is already considered to be a very
large number compared to its use in many applications [8]. The SB method is
non-iterative and also effective in the noiseless case, but it is clear from the exper-
iments that the eigen-structure of the point proximity matrix does not provide
robust features for matching under (even very small) noise. On the other hand,
the proposed technique is non-iterative and always finds the optimal solution for
a model that itself is optimal in the limit of zero noise. Thus it is reasonable to
expect that for small levels of noise the solution will be “close” to the optimal
solution (although the precise meaning of “close” is not yet clear, as already
mentioned), what is strongly suggested by the virtually perfect performance in
the range std = [0, 1]. Current efforts are being dedicated to obtain theoretical
results on how the 3-tree approximation deteriorates as noise increases.
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6 Conclusion

In this work, we have investigated how different sources of approximation affects
the performance of point set matching methods. Usual approaches to point set
matching, such as spectral and relaxation-based methods, encode all the avail-
able information in the model representation, but rely on approximate algorithms
for deriving the assignment. Our method, in contrast, consists in approximating
the problem itself such that the resulting representation is suitable for the use
of optimal algorithms for finding the match. Our method consists in modeling
the relational features of a point set in a Markov random field framework where
the underlying graph structure is sparse and allows for optimal MAP computa-
tion in polynomial time. Experiments were performed both with synthetic and
real-world data sets, which indicate that the proposed “approximate model -
optimal algorithm” approach is a serious alternative to other “optimal model -
approximate algorithm” approaches.
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Abstract. In this paper, we discuss the notion of consistency in inexact
graph matching to be able to correctly determine the optimal solution of
the matching problem. Consistency allows us to study the cost function
which controls the graph matching process, regardless of the optimization
technique that is used. The analysis is performed in the context of change
detection in geospatial information. A condition based on the expected
graph error is presented which allows to determine the bounds of error
tolerance and in this way characterizes acceptable over inacceptable data
inconsistencies.

1 Introduction

Graphs are a powerful data structure to represent objects and concepts in vari-
ous domains. In geographic information systems (GIS), attributed graphs form
a natural way to represent spatial objects together with its features and rela-
tionships to other objects. Within this field, a major challenge is the continuous
assessment and control of the quality of the spatial data. The rapid growing
number of sources of geospatial data, ranging from high-resolution satellite and
airborne sensors, GPS, and derivative geospatial products, pose severe problems
for integrating data. Content providers face the problem of continuously ensuring
that the information they produce is reliable, accurate and up-to-date. Integrity
constraints are able to resolve certain issues in the data, like valid attribute
values or relationships between data objects. The main issue is however the con-
sistency of the data with respect to the current ”real-world” situation. Part of
this problem is handled using image interpretation from aerial photos and very-
high-resolution satellite images. Although this is still mainly a manual process
performed by human operators, automated detection of change and anomalies
in the existing databases using image information can form an essential tool to
support quality control and maintenance of spatial information.

In our work, graph matching is used to find correspondences between the de-
tected image information and the geospatial vector data, like digital road maps.
The query process, based on attributed graph matching, is driven by the spatial
relations between the features and takes into account different errors that can
occur (e.g. spatial inaccuracy, data inconsistencies between image and vector
data). Error-tolerant graph matching can be used to find correspondences be-
tween the detected image information and the vector data. Spatial constraints
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between objects are used to find a reliable object-to-object mapping. Spatial re-
lations between objects prove to be more reliable for detecting change compared
to local object features which cannot always be detected with high enough relia-
bility. We derive an expression, based on the notion of consistency as introduced
in [4], which characterizes the bounds where an image feature is identified as part
of the object model or as a noise structure. This condition which maps a feature
on the null label is a difficult constraint to model and has been traditionally set
using heuristic rules-of-thumb. We show how the expected graph error of the
object model can be used to determine this constraint.

The remainder of this paper is organized as follows. Section 2 introduces error-
tolerant graph matching and derives the error bound to characterize acceptable
over inacceptable inconsistencies. Section 3 gives experimental results on syn-
thetic data which validate the derived bounds. Section 4 concludes the paper.

2 Error-Tolerant Graph Matching

The problem can be represented as finding the correspondence between two sets
of features: one set originating from the geographic database and one set originat-
ing from the image. Given these features an abstract representation can be built
as an attributed graph. The vertices of the graph represent image features and
the vertex attributes can contain measurements on these features. The edges
of the graph represent relations between features and the edge attributes can
contain measurements on spatial relations. A similar graph can be built on the
vector data, using data objects as vertices and relations between objects as edges.
The problem of registration is represented as a graph matching problem, which
seeks the correspondence of similar vertices between two attributed graphs.

In solving the correspondence problem, one should allow tolerance to impre-
cision and inconsistencies. Errors can occur on the location of the object due
to inaccurate detection, differences in spatial resolution of the data and data
inconsistency. In addition, false positives can be present in both datasets. Spe-
cific to the problem is that the matching technique should be able to distinguish
between errors due to severe data inconsistencies and errors due to spatial inac-
curacy. As an example of the latter category, the position of the roads can differ
but the general structure of the road network is preserved. In the first category,
the structure of the road network differs significantly. In this work, we examine
continuous relaxation labeling to solve the correspondence problem ([2],[7]).

2.1 Constraint Satisfaction Using Relaxation Labeling

The matching problem can be defined as a graph labeling problem, which consists
out of the following elements:

1. a set of objects i ∈ Ωi, corresponding to image features;
2. a set of labels λ ∈ Ωλ, corresponding to GIS features;
3. a neighbour relationship over the objects;
4. constraints on possible labels between pairs of neighbouring objects.
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Relaxation labeling techniques use an iterative process to determine the prob-
abilities of each object. Different update rules have been proposed. In [4], the
relation between different update rules is analytically shown. The problem of
finding consistent solutions is shown to be equivalent to solving a variational
inequality which is based on the mathematical concept of ”consistency”. This
concept, which is defined below, is interesting because by using it, the label-
ing process can be redefined as a quadratic optimization process. This offers
guidance in determining good compatibility coefficients.

To each object i a probability distribution {pi(λ)}λ∈Ωλ
is associated that

expresses that object i has label λ:

0 ≤ pi(λ) ≤ 1,
∑

λ∈Ωλ

pi(λ) = 1 (1)

A labeling for the problem is specified by p = {pi(λ)}i∈Ωi,λ∈Ωλ
. For each

pair of neighbouring objects i and j and for each pair of labels λ and λ′, a
compatibility coefficient rij(λ, λ′) is defined. These coefficients express the com-
patibility of assigning label λ to object i in combination with assigning label λ′

to object j. Negative values express incompatibility, positive values compatibil-
ity. Given these quantities, the support of a label λ for the object i given by the
correspondence p is defined as

si(λ) = si(λ, p) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ, λ′)pj(λ′) (2)

Given a non-ambiguous solution p (i.e. pi(λ) = 0 or 1), with λ1, ..., λn the
labels which are given to the resp. object i,...n, then p is a consistent solution
iff

si(λi, p) ≥ si(λ, p), ∀λ, i = 1...n (3)

For a non-ambiguous solution p, this can be extended to the weighted sum
of the support functions. p is a consistent solution iff∑

λ∈Ωλ

pi(λ)si(λ, p) ≥
∑

λ∈Ωλ

vi(λ)si(λ, p), i = 1...n (4)

for all labelings v.
Eq. 4 defines the solution p through a system of n inequalities. Hummel and

Zucker have shown that if the compatibility matrix rij(λ, λ′) is symmetric, the
solution can be calculated as maximizing the average local consistency, given by

A(p) =
∑
i∈Ωi

∑
λ∈Ωλ

pi(λ)si(λ, p) (5)

This is a quadratic function in the variables pi(λ), which can be optimized using
a constrained gradient descent method taking into account the restrictions of
Eq.(1).

This quadratic function can be found in various forms in the literature. In
graph theory, the problem is known as the maximum clique problem [1]. The
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optimal consistent correspondence is equivalent with the maximum clique in
the association graph between two graphs. Based on a theory of Motzkin and
Strauss, it has been shown how the global optima of a quadratic problem based
on the adjacency matrix of a graph are equivalent to the maximum cliques [6].
The quadratic problem is similar to Eq. 5 where the compatibility matrix equals
the adjacency matrix.

In computer vision, the graph matching problem has been studied using differ-
ent techniques. In [2] a Bayesian model is developed which leads to a probabilistic
relaxation scheme. In [4] it is shown how the updating equation of probabilis-
tic relaxation can be approximated by continuous relaxation. The underlying
model is thus similar to Eq. 5, with the compatibility coefficients related to the
conditional probabilities pij(Aij |λ, λ′). In [5] a Markov random field approach
is introduced to solve the matching problem using a relational description of
the scene. The problem is modeled using normal distributions, which makes the
modeling similar to the one used by [2]. The essential difference lies in the opti-
mization technique which is applied. In the case of MRF, the optimal solution
is found using annealing techniques. Probabilistic relaxation uses the relaxation
equations, which are a form of gradient descent. After review of the literature,
we find that the published techniques differ mostly in the optimization technique
that is applied (i.e. search trees, annealing, genetic algorithms). The modeling
of the matching problem is often similar albeit in disguised form. In our view,
it is important to concentrate on the correct modeling of a problem. If a prob-
lem is badly modeled, it will always lead to a bad solution, regardless of the
optimization technique that is used.

2.2 Parameter Condition

To guarantee a good solution of the matching problem, the compatibility matrix
rij(λ, λ′) needs to be determined correctly. In most applications, the value of
these coefficients are determined using heuristics which basically impose a rela-
tive order on the constraints. Strong constraints receive a higher absolute value
then weak constraints. The specific ratio between the constraints is usually de-
termined through trial-and-error. For the null assignment it is however difficult
to determine a correct value for the compatibility coefficient rij(λ∅, λ′). Since
each object is a priori a possible null object, every assignment is consistent with
the null assignment. The problem is to assess the relative importance of the null
assignment with respect to the other constraints. It should be avoided that the
null solution is the most consistent solution of the system. On the other hand,
false correspondences of spurious points should be less consistent than the null
assignment.

The definition of consistency can be used to determine the correct values.
The definition not only determines the optimal solution of the labeling problem,
it also determines what values the compatibility coefficients should take for an
”ideal” solution to become the optimal solution of the system. The ideal solution
is the matching we wish to find given the noise properties of the detection. For
a correct null assignment, we need to determine when the errors, which occur
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in the neighbour structure of a node, are acceptable and when the number of
errors becomes too large so that the null label should be assigned. To analyse
this, we should look at the support of the different assignments. In the case of
the null assignment, the support can be written as:

si(λ∅, p) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ∅, λ′)pj(λ′)

= w∅
∑
j∈Ωi

∑
λ′∈Ωλ

pj(λ′)

= w∅d(i)

(6)

with d(i) the degree of node i (i.e. the number of neighbours). We have simplified
rij(λ∅, λ′) = w∅ if j ∈ Ωi (else rij(λ∅, λ′) = 0). The constant factor w∅ is
reasonable in the absence of prior knowledge of assignments.

The support for a non-null label can be split up into three classes Ω+
i , Ω−

i and
Ω0

i , namely positive coefficients which express compatibility, negative coefficients
which express incompatibility and negative coefficients which control the null
assignment. If we consider the first two classes of coefficients constant (resp. w+
and w−) within the neighbourhood of node i then the support for λi can be
simplified to

si(λi) =
∑

j∈Ω+
i

r+
ij(λi, λj) +

∑
j∈Ω−

i

r−
ij(λi, λj) +

∑
j∈Ω0

i

r0
i

= w+n+ + w−n− + w∅n0

(7)

Here n+ is the number of compatible neighbours, n− the number of incompat-
ible neighbours and n0 the number of null-neighbours, with n+ +n− +n0 = d(i).
Eq.(6) and (7) give the following condition which holds in the optimal solution:

w+n+ + w−n− + w∅n0 > w∅d(i) (8)

or equivalently

(1− f0)w∅ < f+w+ + f−w− (9)

where f+, f− and f∅ are the fraction of compatible, incompatible and null
assignments in the neighbourhood of object i for the ideal mapping.

Eq. 9 can be used to determine the weights for the compatibility matrix given
the expected relational graph error. It allows to make a distinction between
points showing small distortions, which should find a correspondent in the other
dataset, and points showing severe distortions, which should be assigned the
null label. As previous research usually relied on rules-of-thumb to determine
these weights (e.g. [7]), the importance of this equation is that it allows precise
definition of the weights of the graph matching problem with respect to the
expected graph error of the system.
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3 Experimental Results

A set of experiments has been performed on images containing randomly scat-
tered points. Each image is generated twice: one copy which serves as a reference
and one copy which contains perturbations on the scattered points (e.g. noise on
the position, added spurious points). The aim is to find the corresponding points
between the two copies using graph matching while ignoring the spurious points
in the data. The experiment is an abstraction of the correspondence problem be-
tween image and GIS data after features like road junctions have been detected
in the image.

To apply the technique to matching sets of points, we need to introduce the
constraints which define similarity. For road junctions several possibilities exist.
However, the quality of detection of road junctions that can be achieved is not
of sufficient quality to use object features, like number of incoming roads, as in-
formation for the correspondence process [3]. Fragmentation and false detections
can frequently occur in the detected road network and are difficult to control. We
therefore opt to use geometric invariants between subsets of corresponding junc-
tions. The most simple constraints are binary relations like geometric relations
(e.g. angle, distance) between a junction and its neighbours to find correspon-
dences. These are much more stable features, given the detection quality which
can realistically be expected from road detection. In these experiments we rely
only on the relative angle between pairs of points. Figure 1 shows an illustration
of this constraint. The black points show object points i and the grey points
show the label points λ. In mapping a pair of points i and j on λ and λ′ the
relative angle between the lines ij and λλ′ does not exceed a given �α. (e.g.
π/4). If this constraint is violated, the compatibility coefficient rij(λ, λ′) is as-
signed a negative weight w−. The graph representation of the data is of course
not restricted to angles and can be readily generalized to incorporate other mea-
surements like connectivity, distance or other topological relations. In our case,
the angle between junctions was chosen because it could be reliably measured
in the image. Other measurements like connectivity between junctions are more
difficult to measure in the image due to the degree of fragmentation in road

Fig. 1. Illustration of the spatial constraint, based on consistent relative angle between
pairs of correspondences (i, λ) and (j, λ′)
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Fig. 2. Example of a 30-to-100 correspondence: (left) original set of points with white
boxes showing spurious points, (right) points with added noise σ = 4 pixels. Correct
matches are shown with grey lines; wrong matches with a black line; wrong spurious
matches with a dashed line

detection. Nevertheless, the graph matching technique is generic and applicable
once image and GIS information are described in terms of attributed graphs. In
the experiments, points are randomly scattered within an image of 512 × 512
pixels. The first set of points contains 30 points and the second set contains
100 points. Both sets have 20 points in common with a perturbation on their
position using gaussian noise with a standard deviation between one and eight
pixels. The matching result needs to make a distinction between points which are
common between the two datasets (so called ”real” points) and spurious points.
Figure 2 shows an example of this dataset with the first and second set displayed
in resp. the left and right frame, and the correspondence computed with graph
matching. In this example, the gaussian noise on the position has a standard
deviation σnoise = 4 pixels. The white rectangles in the left frame are added
spurious points, which should be assigned the null label. The grey lines show the
points which have been correctly associated. The black lines show points which
have been incorrectly associated. The dashed black lines show spurious points
which have been incorrectly associated.

To determine the optimal weights of the graph matching process, Eq. 9 is
used. In these experiments, the parameters of RL have been set at �α = π/16
and w− = −0.5. Compatible matches are not awarded, meaning that w+ = 0.
The data contains a ratio of 10:30 outlier points so that f∅ = 1/3. Eq. 9 can then
be used to determine the weight w∅, which varies over the experiments since the
graph label error f− increases as more noise is added to the position. An added
difficulty is that the label error f− is a stochastic variable. To use Eq. 9, we need
to determine the value of f− which optimally makes the distinction between
real distorted points and spurious points. This can be done by modeling the
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exhibited graph errors of real and spurious points as normal distributions with
a certain mean and standard deviation, and taking the maximum likelihood
estimate (MLE) as the optimal decision boundary f−

opt (cfr. Figure 3). Label
errors f− below this threshold are then regarded as acceptable errors belonging
to real points. Label errors f− above this threshold are regarded as severe errors
belonging to spurious points.

We measured the mean and standard deviation of the graph label error over
a selection of 10 image pairs for a given amount of noise σnoise. For real points,
the ideal mapping is known and the graph label error for these points can be
measured. Table 1 gives a summary of the label error statistics (m1, σ1) for the
different amounts of noise. For spurious points, we selected the best matching
corresponding point in the second dataset. Since this is a combinatorial problem,
the match is approximated under the condition of a near ideal mapping, i.e. the
real points are mapped on the correct correspondents, the other spurious points
are mapped on the null label. Under these conditions, finding the best match
for a point is a linear search. For this match, we measure the graph label error
that would occur if a spurious point is mapped on his most likely candidate.
Measured over the dataset, this gives an mean label error mn = 38.5% with
standard deviation σn = 16%. Using MLE on these statistics, the threshold f−

opt

can be calculated and consequently wopt
∅ using Eq. 9.

Table 1 gives the calculated wopt
∅ . These calculated weights are compared to

the measured optimal weights wmeas
∅ . The weights wmeas

∅ have been determined
by plotting the ”receiver operating characteristic” (ROC) curve by varying w∅.
For this curve, sensitivity and specificity are defined as follows:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

(10)

where {TP, FP, TN, FN} stands for true positive, false positive etc. If sensi-
tivity is plotted along the X-axis and specificity along the Y-axis, the optimal
performance is defined as the point on the ROC curve closest to the upper right
corner (1, 1). The weight associated with this sample is taken as the optimal
measured weight wmeas

∅ .
Table 1 shows a good correspondence between the predicted optimal weight

wopt
∅ and the measured optimal weight wmeas

∅ . There is a slight overestima-
tion with respect to the measured weight wmeas

∅ which becomes more apparent
at higher noise levels. This can be due to ambiguous points which are intro-
duced by adding spatial noise. The ground truth which is used to determine
true and false positives does not take into account the possibility of optimal
point matches changing. Especially at high spatial noise levels this is possible
in dense point clouds, since the spatial error can interchange the position of
neighbouring points. For the constraint satisfaction problem, this interchange is
not detected as the constraints will not be violated, but the ground truth will
penalize the found match. Nevertheless, it remains relevant to use Eq. 9 to tune
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Fig. 3. Maximum likelihood estimate of the optimal decision boundary f−
opt

Table 1. Determining the null weight based on maximal likelihood with respect to the
expected graph error. Noise statistics mn = 38.5% and σn = 16%

stdev [pix] m1 σ1 wopt
∅ wmeas

∅

1 0.5% 1.1% 0.05 0.05
2 2.3% 2.8% 0.09 0.07
4 7.8% 6.2% 0.19 0.15
8 21.7% 10.4% 0.32 0.25

the graph matching process based on the expected graph error, as in many appli-
cations like road networks such interchanges do not occur often. If it does occur,
a minimum point density should be applied to avoid this ambiguous mapping.

4 Conclusion

We have presented a condition based on the expected graph error which allows to
determine the bounds of error tolerance in the matching process. The condition
allows to characterize acceptable over inacceptable data inconsistencies. The
derivation is based on the notion of consistency in inexact graph matching, and
is useful to determine the optimal weights of the cost function given the expected
graph label error. Experiments on synthetic point sets have shown the relevancy
of this condition with respect to the specification of the null weight, which is
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typically been determined using rules-of-thumb. Although some problems still
need to be solved concerning ambiguous points, the condition allows more control
over the desired behaviour of the graph matching problem. This is essential for
a reliable use of inexact graph matching in change detection applications.
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Abstract. This paper discusses inexact matching of graphs that are spatially-
attributed and asymmetric. In a spatially-attributed graph, vertex attributes 
indicate the coordinates of an image feature represented by the vertex. 
Asymmetry arises when two graphs represent the same data at different 
resolutions: this causes an edge in the coarse graph to match an entire path in 
the fine graph. The two graphs may use different coordinate systems, so a 
coordinate transform must be estimated during the graph matching. We present 
an edge first graph matching algorithm to solve this problem, and illustrate its 
application to the registration of satellite images to road maps. In our current 
implementation, graphs that represent road networks are manually extracted 
from satellite images and digitized road maps. Most of the existing algorithms 
are not designed to handle the asymmetry present when matching a coarse 
graph to a fine graph. 

1   Introduction 

This paper presents a robust graph matching algorithm that registers spatially-
attributed graphs with different resolutions, scales and orientations. This graph-
matching problem is motivated by an application in interpretation of geographic data. 
With widespread availability of both digitized road maps and high-resolution satellite 
images, there is opportunity to exploit the combination of these two sources of 
information. A known road map could be used to help interpret a satellite image, 
providing predictive information for locating features on the satellite image. 
Alternatively, information extracted from a satellite image could be used to update an 
outdated road map, or to detect damaged areas after floods or earthquakes [11] [12] 
[13]. For all of these applications, an important first step is to register the road map to 
the satellite image. 

Figs. 1 and 2 show a digitized road map and the corresponding satellite image, and 
Fig. 3 shows the correct registration of these two images. We use graph matching to 
register road maps to satellite images. Other approaches are discussed in [2] [8] [9] 
[11] [12] [13]. 

As shown in the white overlays of Figs. 1 and 2, we extract graphs representing 
road network, with nodes representing intersections, sharp bends, or terminations of 
roads, and edges representing segments of roads. The graphs are spatially-attributed 
meaning that vertex attributes record the (x, y) coordinates for the road feature 
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represented by the vertex. In our present work, the graphs are created manually, by 
drawing on a display of the digitized road map or the satellite image. In future work, 
automatic road-extraction algorithms could be used [3] [6] [10]. In manually 
extracting graphs from satellite images, we include major roads but omit many small 
roads. This is meant to approximate the behaviour of road-extraction algorithms, 
which are likely to obtain a fairly complete road network from the relatively clean and 
clear road map images, while obtaining a less complete road network from the 
satellite images. 

Several difficulties arise in the graph-matching problem illustrated in Figs. 1 and 
2. One difficulty is that graph matching must allow for asymmetry in the level of 
detail of the two graphs. The more detailed graph (called the model graph) contains 
nodes and edges that are not present in the coarser graph (called the data graph). In 
other words, most of the vertices in the data graph have a corresponding vertex in the 
model graph, whereas many model graph vertices do not necessarily have a 
corresponding vertex in the data graph. Therefore, an edge in the data graph needs to 
be matched to an entire path in the model graph. Another difficulty is that the relative 
scale, orientation, and alignment of the two images are not known. The graph 
matching algorithm must find a coordinate transform to relate the positional attributes 
in the data and model graphs. In this work, we assume that the coordinate transform is 
affine. Further work is needed to address the problem of radial distortion, which is 
significant in many aerial photos. Note that the differences in scale and orientation 
mean that it is not possible to match the entire model graph to the entire data graph. 
Parts of each graph are unmatchable since they represent geographic regions that are 
not represented in the other graph. 

Most of the existing algorithms for inexact graph matching mainly focus on 
matching graphs with equal resolution. Therefore, these algorithms are not suitable 
for solving the asymmetric graph matching problem. We illustrate this by comparing 
the performance of our algorithm to that of Wilson's algorithm [11] [12] and to that of 
Shapiro’s algorithm [9]. 

   

Fig. 1. A road map of 
Manhattan. In white: the 
model graph from this 
image 

Fig. 2. Satellite image of 
Manhattan  from  spaceimaging
. In white: the data graph from 
this image 

Fig. 3. Correct registration of 
the images in Figs. 1 and 2 
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The application we discuss in this paper is registration of digitized road maps and 
satellite images. Other situations in which asymmetric graph matching might be used 
are when the raw geographic data is not in image form. For example, a vehicle could 
be equipped with a position sensor and then driven along selected roads. Asymmetric 
graph matching might also find application in aligning the trajectory of a mobile robot 
to a given topological or geometric model of the environment. Perhaps images of 
printed circuit boards could be matched to plans of the circuit board. 

2   Description of the Algorithm 

In most graph matching methods, vertices are matched first, and then edge mappings 
are obtained from the mappings of vertices. We call this vertex-first matching. In our 
approach, edges are matched first, and then vertex mappings are derived from the 
edge mappings. We call this edge first matching.  

We avoid vertex-first matching because it is difficult to measure the similarity 
between two vertices when the vertices have different degrees. In our application, 
vertex degrees are higher in the model graph than in the data graph. Bunke suggests a 
cost function to use as the matching criterion in vertex-first matching; the 
computation of the cost function is rather complex, which requires four independent 
parameters [1]. Furthermore, the prototype of Bunke’s cost function does not consider 
any additional attribute. Myers et al. propose a matching criterion based on 
Levenshtein edit-distance, which does not consider vertex attributes or edge attributes 
[7]. We need to consider vertex attributes, since these provide positional information 
that is essential to finding the best graph match. However, the positional attributes 
cannot be used until the coordinate transform between the model graph and data graph 
is known. It is difficult to determine this transform during vertex-first graph matching. 

We use edge first matching to in our asymmetric graph matching algorithm. The 
matching is complicated by the need to match a single edge in the data graph to a path 
in the model graph. As described below, we solve this problem by augmenting the 
model graph with extra edges, which represent paths in the model graph that are 
geometrically almost straight. Afterwards, single edges in the augmented model graph 
can be matched to edges in the data graph. The first edge mapping, between the seed 
edge in the data graph and the shadow edge in the model graph, has a special status: 
this one edge mapping determines the affine transform that relates the coordinate 
systems used in the model and data graphs. Once this coordinate transform is known, 
all other edge mappings are found by minimizing the positional differences between 
the edge endpoints. Fig. 4 illustrates the steps in the algorithm. 

The algorithm has two parameters: the augmentation threshold taug used in Box 1 
of Fig. 4, and the standard deviation σ for the Gaussian error function used in Box 6 
of Fig. 4. These parameters are discussed further below.  

We use GD=(VD, ED) to denote the data graph, where VD is the set of vertices and 
ED is the set of edges. Similarly, the model graph is denoted GM=(VM, EM) and the 
augmented model graph is denoted GAM=(VAM, EAM). 
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Fig. 4. Flowchart of our asymmetric graph matching algorithm 

2.1   Augment Edges in the Model Graph 

The first step of the algorithm (Box 1 in Fig. 4) is to augment the model graph with 
extra edges. This step adds edges to represent paths of the model graph that are 
geometrically nearly straight. Fig. 5 shows the result of augmenting the model graph 
in Fig. 1. 

To test whether a path in the model graph is nearly straight, we compare the 
distance between two vertices to the length of the shortest path between these 
vertices. Distances are calculated as Euclidean distances between the (x, y) 
coordinates stored as vertex attributes in the graph. We first compute the all-pair 
shortest paths of the model graph, using Johnson's algorithm [4]. Then we test all 
pairs of unconnected vertices: add an edge between these vertices if the length of the 
shortest path is less than taug times the distance between the vertices.  

The augmentation threshold taug is an important parameter to our algorithm. It 
must be greater than 1, or the augmentation step does not add edges to the model 
graph. As reported in Section 3, our experiments use taug values in the range 1.01 to 
1.1. With taug = 1.01, we observe that in our experimental dataset, the augmented 
model graph contains approximately 6 times as many edges as the original model 
graph. With taug = 1.1, this rises to approximately 50 times as many edges. 

2.2   Seed and Shadow Edges Define the Coordinate Transform 

Finding the coordinate transform that relates data and model graph is a central step in 
our algorithm. Since we assume that the coordinate transform is affine, a single 
mapping between a data-graph edge and a model-graph edge suffices to determine the 
parameters of the coordinate transform. As shown in boxes 2 to 4 of Fig. 4, the 
endpoints of a seed edge in the data graph are overlaid on the endpoints of a shadow 
edge in the augmented model graph, to determine the coordinate transform.  
Exhaustive search involves testing 2 |ED| |EAM| possibilities, mapping each of the |ED| 
data-graph edges to each of the |EAM| model-graph edges, at two possible orientations. 
Our algorithm tests only 2 |EAM| possibilities, by fixing one particular edge of the data 
graph to act as seed edge. The choice of seed edge is discussed further below. (If the 
seed edge does not have a corresponding edge in the augmented model graph, then 
our algorithm fails to find the correct coordinate transform, and thus fails to find the 
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proper graph matching) Once the seed edge has been chosen, we exhaustively search 
the augmented model graph for an edge that matches the seed edge: we compute 
2 |EAM| coordinate transforms, by overlaying every model-graph edge, at two 
orientations, onto the seed edge. If information about the approximate scale and 
orientation of the map and satellite images is available, this could immediately 
eliminate many of the 2 |EEM| coordinate transforms from consideration. 

In choosing the seed edge in the data graph, our goal is to choose an edge that is 
very likely to have a corresponding edge in the augmented model graph. We should 
avoid choosing the seed edge near the periphery of the data graph, since there can be 
mismatch between the geographic areas represented by the data and model graphs. 
Therefore, we choose the seed edge from the central area of the data graph. The 
central area is defined as the central quarter of the area represented by the data graph. 
If the data graph has extreme coordinates (xmin, ymin) and (xmax, ymax), then the central 
area has extreme coordinates ((3xmin+xmax)/4, (3ymin+ymax)/4) and ((xmin+3xmax)/4, 
(ymin+3ymax)/4). The seed edge is chosen as the longest edge that lies within the central 
area. If no edges lie in the central area, then the seed edge is chosen to be the edge 
that has the shortest distance to the center point ((xmin+xmax)/2, (ymin+ymax)/2). When 
there is no edge in the central area, the data graph may not work well with partially 
overlapped model graph. 

 Once the seed edge in the data graph has been chosen, we iteratively try mapping 
the seed edge to every possible shadow edge in the augmented model graph. In each 
iteration, the algorithm transforms the data graph to put it into the Cartesian 
coordinate system of the model graph. The coordinate attributes in the data graph are 
recalculated using a translation, scaling, and rotation. This is illustrated in Fig. 6. 
Mathematical details of the coordinate transform are presented in [5]. 

  

Fig. 5. An augmented 
model graph. shows a 
close-up of the graph in 
Fig. 1, after augmentation 

Fig. 6. Coordinate transform resulting from overlaying the seed 
and shadow edges 
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2.3   Compute the Rest of the Edge First Mapping 

As described above, the mapping from seed edge to shadow edge is used to determine 
the coordinate transform between data graph and model graph. The next step in the 
algorithm (Box 5 in Fig. 4) is to consider every edge in the transformed data graph, 
finding the mapping to the most similar edge in the augmented model graph. The 
Euclidean distance between vertices is used to calculate similarity scores. The vertex 
similarity score is 
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where data-graph vertex ( )ddd yxv ,= , model-graph vertex ( )mmm yxv ,= , and σ 

is a parameter that controls the sensitivity to distortions of vertex position. The edge 
similarity score is computed as the product of the similarities of the edge endpoints. 
Each data-graph edge is mapped to the edge in the model graph that maximizes the 
edge similarity. The overall graph similarity score, for this particular coordinate 
transform, is the average edge similarity score, averaged over all of the mappings of 
data graph edges. 

2.4   Use the Edge Mappings to Find Vertex Mappings 

Each data-graph edge is independently mapped to the most similar edge in the 
augmented model graph. This does not provide an unambiguous mapping of vertices: 
a data graph vertex acts as endpoint for several data graph edges, and these edges may 
map that endpoint to different vertices in the augmented model graph. A data-graph 
vertex vd has a mapping to a fuzzy set of augmented model graph vertices: the fuzzy 
membership of vertex vm is determined by the summed similarity scores of all the 
edges that map vertex vd to vertex vm. 

2.5   Computational Complexity 

The computational complexity in the worst case is O((|ED|+log|VM|)|EAM|2). In most 
cases, the number of edges in the augmented model graph is linear to the number of 
edges in the model graph. In our experiments, the edge number in the model graph 
after augmenting edges is increased by 6 times when the augmenting threshold is 
1.01. So, the computational complexity in the average case is O((|ED|+log|VM|)|EM|2). 

3   Experimental Results and Discussions 

We conducted a series of 15 tests, using various subimages of a digitized road map 
and a satellite image of Manhattan, NY. The digitized road map is provided by Rand 
McNally StreetFinder [16] and the Satellite image is provided by Spaceimaging.com 
[15]. Data graphs and model graphs are manually extracted from the satellite image 
and road map. In all 15 test sets, the digitized road map and the satellite image have 
different alignment, orientation, and scale. For example, in the test set shown in 
Fig. 7, the road map covers a much larger geographic area than the satellite image. 
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Sizes of the test sets are as follows: the data graphs contain 15 to 89 vertices, with 19 
to 140 edges, and the model graphs contain 567 to 878 vertices, with 909 to 1468 
edges. We also tested our algorithm with other digitized road map and satellite 
images, including a digitized road map of downtown Toronto provided by Microsoft 
Streets and Trips [14] and a satellite image provided by Spaceimaging.com [15]. The 
algorithm is implemented in C++ and runs on a Pentium 4-2.6G workstation. Running 
time for a data graph containing 50 edges and a model graph containing 1500 edges is 
approximately 20 to 40 seconds. 

Each test set is run with various combinations of two parameters taug (the 
augmentation threshold) and σ (the standard deviation used in vertex similarity 
scoring). The effect of changing the taug is shown in Fig. 8, and the effect of changing 
σ is shown in Fig. 9. 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Test set 3. (a) Satellite image with superimposed data graph. (b) Road map with 
superimposed model graph. The white rectangle indicates the geographic area covered by the 
satellite image (c) Close-up of a road-edge in the data graph. (d) Close-up of this same stretch 
of road, represented as three edges in the model graph. The augmented model graph contains an 
edge from vertex a to d 

We compared our algorithm with Wilson’s discrete relaxation graph matching 
algorithm and Shapiro’s feature based algorithm [9] [11] [12]. Our experimental 
results show that our graph matching algorithm outperforms these algorithms on 
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matching asymmetric graphs in terms of accuracy rate. As discussed below, Wilson’s 
and Shapiro’s algorithms have poor performance when matching asymmetric graphs. 
This is understandable, since these algorithms are not designed for this task. We are 
not aware of any existing graph-matching algorithms that are designed to handling 
asymmetric graphs. 

 

Fig. 8. Size of the augmented model graph, as a function of taug. When taug=1.01, the augmented 
model graph contains approximately 6 times as many edges as the original model graph. When 
taug=1.1, this rises to a factor of approximately 50 

 

Fig. 9. The effect of changing σ, the standard deviation for matching rate 

Under Wilson’s discrete symmetric graph matching algorithm, most vertices and 
edges are mismatched or unmatched on our experimental data. Wilson’s algorithm 
relies on the relationships of vertices between the model graph and the data graph, 
while these relationships are dissimilar between asymmetric graphs. So, we believe 
that Wilson’s algorithm is not suitable for asymmetric graph matching problems.  

Shapiro’s algorithm performs well when the data graph and the model graph have 
no or only little distortion on the features of vertices. However, with the increase of 
distortion, the correct matching rate decreases dramatically. When we applied 
Shapiro’s algorithm with reasonable values for the parameter σx on the test sets used 
on our algorithm, less than half of the vertices are correctly matched in the best case. 
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The complete test results are reported in [5]. In these tests we find that small data 
graphs, with 15 vertices and 19-22 edges, do not provide sufficient context for reliable 
matching. Medium-sized data graphs, with 35 vertices and 51 to 54 edges, yield more 
reliable results. 

Our algorithm returns perfect results in many cases, including the matching of 
partially overlapped graphs, as shown in Fig. 7. All edges in the data graph are 
matched to correct edges in the model graph. Fig. 10 shows another successfully 
matched data graph which maps to Fig. 7(b). 

One cause of the algorithm failure is poor choice of parameter values. It is 
desirable to keep the augmentation parameter taug as small as possible, in order to 
minimize the runtime by minimizing the size of the augmented model graph. In our 
experiments, the average run time is increased by 30% when we change taug from 1.01 
to 1.02, and is again increased by 155% when we change taug from 1.02 to 1.05. 
However, if taug is too low, edge mismatches result because the augmented model 
graph is missing needed edges. For example, the road in Fig. 7(c) matches the path 
from a to d in Fig. 7(d). When taug 1.02, our augmentation step adds an edge between 
vertices a and d. However, if taug 1.01, no such edge is added and therefore no correct 
match to the edge in Fig. 7(c) can be found. When σ is too small, the matching scores 
become low and the algorithm may return failure. If σ is too large, some edges may 
be matched incorrectly. 

Periodicity in the road network is another cause of algorithm failure. For example, 
if the roads are laid out in a grid, as in Fig. 11, then the registration may be shifted by 
one or more grid locations. Future work to address this problem could include 
preprocessing roads and intersections, to rank them by their geometric distinctiveness. 

4   Conclusion 

In this paper, we have formulated and addressed an interesting and practically 
important graph matching problem. Novel aspects include the asymmetry of the 
graphs, the use of Cartesian coordinate attributes to match graphs at different scale 
and orientation, and the use of edge first matching. We have designed a scale, 
translation, and rotation invariant algorithm for asymmetric graph matching. 

  

Fig. 10. Successfully matched data graph Fig. 11. Unmatched data graph 
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In the future, we plan to explore ways to reduce computation time. For large model 
graphs, we may split them into smaller graphs using an overlapping grid. We can also 
make use of other vertex and/or edge attributes such as road width and the curve of 
the road. In addition, we will investigate the use of the algorithm in other applications. 
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Abstract. This paper presents an algorithm for the computation of
the maximum common subgraph (MCS) between two directed, acyclic
graphs with attributes. The core of the contribution resides in the mod-
ularity of the proposed algorithm which allows different heuristic tech-
niques to be plugged in, depending on the application domain. Imple-
mented heuristics for robust graph matching with respect to graph struc-
tural noise are discussed.

As example of its effectiveness, the algortihm is applied to the prob-
lem of 3D shape similarity evaluation through structural shape descrip-
tors.

1 Introduction

Graph matching has been used extensively in a variety of applications and it is
particularly useful when the graphs code a description or structure of a shape.
By graph matching, or more commonly by subgraph isomorphism, it is possible
indeed to assess the similarity among shapes as well as among parts of a shape.
Inexact graph matching is also very important for matching structural descrip-
tions of shapes because small features of a shape can cause small differences
is the structural descriptions, while similarity should be assessed with stability
with respect to noise.

While shape descriptions are usually coded into graph with a relatively small
number of nodes, shape databases are composed by hundreds of models of differ-
ent types and there exists no single similarity measure which optimizes the re-
trieval results for all shape types. Conversely, heuristics and algorithm flexibility
should be left to the user in order to tune the matching to the particular context.

Inexact graph matching has been topic of research since many years and sev-
eral techniques are available: recently, Demicri et al. in [1] reduce the problem
of inexact directed graph matching to the problem of geometric point match-
ing. They use the Earth Mover’s Distance as many-to-many matching algorithm
among the points. In [2] Messmer and Bunke defined an algorithm for the error
correcting subgraph isomorphism (ECSI) detection where the two input graphs
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are recursively decomposed into smaller subgraphs and the ECSIs with the least
edit cost operation are recursively combined to form the complete node match-
ing. Another widely investigated form of inexact graph matching method is the
maximum common subgraph (MCS) detection. For example, three algortihms for
the exact computation of the MCS are presented in [3]: the first is a state space
representation (SSR) algorithm performing a depth-first search in the space of
the states, while the other two detect the maximum clique of the association
graph built from the two input graphs. In [4] another SSR algorithm for the
MCS detection among large graphs is presented. It moves from a generic state
to the following one selecting a candidate pair of nodes according to a set of
feasibility rules guaranteeing that each state is a common subgraph of the two
input graphs.

Many of these techniques have exponential computational complexity and it
is therefore necessary to define algorithmical approximation of the optimal so-
lution. The work presented in this paper is aimed at defining a framework for
expressing the optimal algorithm in a formalization which makes it straightfor-
ward usable for plugging heuristics in it, for achieving different approximations
of the optimal solution according to the specific case. The basic idea has been
skeched in [5, 6] and here it is fully formalized. An optimal algorithm for the
computation of the MCSs is defined on a slight modification of the most naive
algorithm: Starting from the list of all mappings among graph nodes, we grow
the common subgraphs from each mapping through a process which attempts to
add step by step more nodes to the empty initial common subgraph, by expand-
ing at each step two isomorphic subgraphs. This approach may be also seen as a
generalization of the state space representation (SSR) algortihm proposed in [7].

In the paper, we will describe in more details how the subgraph expansion
works and will we show that using this procedure we get exactly the same results
of the naive algorithm, therefore, we get all the MCSs of the input graphs.

2 Basic Definitions

An attributed graph is a four-tuple G = (V, E , μV , μE), where V is a set of vertices,
E ⊆ V × V is a set of edges, μV : V → AV is a function assigning attributes to
the vertices, μE : E → AE is a function assigning attributes to the edges. Let
G = (V, E , μV , μE) be a graph, G′ = (V ′, E ′, μV′

, μE′
) is a subgraph of G, if V ′ ⊆ V,

E ′ ⊆ E ∩ (V ′ × V ′), μV′
: V ′ → AV and μE′

: E ′ → AE .
A graph isomorphism is a bijective function f : V1 → V2 such that 1)

μV1(v) = μV2(f(v)), v ∈ V1. 2) for all the edges e1 = (v1, v
′
1) ∈ E1, there exists

an edge e2 = (f(v1), f(v′
1)) ∈ E2 such that μE1(e1) = μE2(e2). Moreover, for all

the edges e2 = (v2, v
′
2) ∈ E2, there exists an edge e1 = (f−1(v2), f−1(v′

2)) ∈ E1
such that μE1(e1) = μE2(e2). If a graph is not attributed, the first condition
and the equality between the edge attributes in the second condition, are not
necessary. If f : V1 → V ′

1 is a graph isomorphism between G1 and G′, and G′

is a subgraph of G2, then f is called a subgraph isomorphism from G to G′. A
common subgraph of G1 and G2 is a graph G such that there exists a subgraph
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isomorphism from G1 to G and from G2 to G. A maximum common subgraph
of G1 and G2, denoted as MCSG1,G2 is a common subgraph G such that there
exists no other common subgraph having more nodes than G. The MCSG1,G2 in
not necessarily unique.

3 Alternative Formulation of the Naive Solution

A naive algorithm for the computation of theMCSG1,G2 between the two graphs
G1 and G2 is the following: first, enumerate all the possible mappings among V1
and V2; second, search those mappings m that satisfy the definition of maximum
common subgraph. Of course, m is not necessarily unique.

This algorithm is optimal in the sense that it returns the correct result,
but it has an exponential computational complexity. For this reason, heuristic
techniques have to be considered in many applications in order to approximate
the MCSs of two input graphs. Even if the described algorithm is very simple,
it is not easy to define heuristic techniques based on the attributes of edges
and nodes, or on reasoning about the graph structure. Also, it is not easy to
devise an approximation which makes the structural shape matching robust to
structural noise in the graphs. With the aim to introduce such techniques the
second point of the algorithm can be modified in the following way: for each
listed mapping m, compute the common subgraphs of G1 and G2 obtainable by
expanding the mapping m.The algorithm CS from Mapping(m) (see Figure 1)
expands the input mapping m as much as possible while respecting the definition
of common subgraph. Since the first point of both algorithms enumerates all the
possible mappings, proving that the second formulation is correct reduces to
proving that the expansion always produces a correct common subgraph and
that it does not alter the structure of a MCS, should this be given as input to
the expansion process.

3.1 Pseudocode of the Proposed Formulation

In this section, the alternative algorithm is described by explaining the steps of
its pseudocode, as in Figure 1). The main procedure of the algorithm is MCS().
It enumerates the set of initial mappings MG1,G2 and for each m ∈ MG1,G2 it
generates the set of the common subgraphs obtained expanding m. CS returns the
set of the common subgraphs computed by the function CS from Mapping(m) on
the input mappings. Obviously, each m may generate more than one common
subgraph and the expansion procedure CS from Mapping(m) produces all of
them. Finally, the MCSs are obtained selecting the common subgraphs with the
largest number of nodes. The procedure CS from Mapping() trasforms the set of
pairs in m in a set of candidates, where each pair is a candidate for growing one
common subgraph. In this sense, each candidate contributes to generate the set
of common subgraphs, but it also contributes to increment the set of candidates
itself. This process continues until the set of candidates becomes empty. The
addition of a candidate pair to a common subgraph may not satisfy the definition
of subgraph isomorphism, and in this case the Resolve Conflict() procedure
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MCS(G_1, G_2) CS_from_Mapping(map)
{ {

M := Mappings_Set(G_1, G_2) Init_Candidates(CANDIDATES, map)
for each m in M{ Add((CS, CANDIDATES), CS_SET)

CS := CS_from_Mapping(m) for each ((CS, CANDIDATES):= cs_elem) in CS_SET{
Add(CS, MCS) While not Empty(CANDIDATES){

} p := (v_1, v_2, *, *) := Pop(CANDIDATES)
return Max(MCS) if(Mapped(v_1) or Mapped(v_2))

} Resolv_Conflict(p, cs_elem, CS_SET)
else{

Add(p, CS)
Update(p, CANDIDATES)

}
}

}
return Max(CS_SET)

}
Init_Candidates(CANDIDATES, map) Update(p, CANDIDATES)
{ {

for each (v_1, v_2) in map (v_1, v_2, *, *) := p
Add((v_1, v_2, NULL, NULL), CANDIDATES) for each edge e_1 outcoming from v_1 {

} for each edge e_2 outcoming from v_2 {
u = Opposite(v_1, e_1)
v = Opposite(v_2, e_2)
Add((u,v, e_1, e_2), CANDIDATES)

}
}

}
Resolv_Conflict(p, (CS, CANDIDATES), CS_SET) Reset(v_1, v_2, CS, CANDIDATES)
{ {
(v_1,v_2, *, *) := p if(v_1 not NULL){
NEW_CS := CS Delete((v_1,*),CS)
NEW_CANDIDATES := CANDIDATES for each v s.t. Link(v,v_1,CS)

Delete((v, *), CS)
if(Mapped(v_1) and Mapped(v_2)) for each v s.t. Link(v,v_1,CANDIDATES)
Reset(v_1, v_2, NEW_CS, NEW_CANDIDATES) Delete((v, *),CANDIDATES)

else if(Mapped(v_1) and not Mapped(v_2)) }
Reset(v_1, NULL, NEW_CS, NEW_CANDIDATES) if(v_2 not NULL){

else if(not Mapped(v_1) and Mapped(v_2)) Delete((v_2, *),CS)
Reset(NULL, v_2, NEW_CS, NEW_CANDIDATES) for each v s.t. Link(v,v_2,CS)

Add(p, NEW_CS) Delete((v, *), CS)
Update(G_1, G_2, p, NEW_CANDIDATES) for each v s.t. Link(v,v_2,CANDIDATES)

} Delete((v,*),CANDIDATES)
}

}

Fig. 1. The pseudocode of the main steps of the proposed algorithm

is executed to correctly handle the situation. The expansion process starts with
the call to Init Candidates() (figure 1) which initializes the set of candidate
pairs of mapped nodes, CANDIDATES, with the input mapping m. An element of
type CANDIDATES is a four-tuples (v1, v2, e1, e2) representing the nodes and edges
mappings candidate to belong to the common subgraph. CS SET is defined by a
set of pairs (CS, CANDIDATES) where also CS is a set of four-tuples (v1, v2, e1, e2)
representing the nodes and edges mappings of the common subgraph. After the
initialization, CS SET contains the pair (CS, CANDIDATES) with CS = φ.

The next step consists of adding elements to CS by checking if the vertices of
the candidate vertices can be mapped correctly. The test consists of checking if
the nodes of the candidate extracted through Pop() are already mapped or not: if
not, that is if they do not belong to any four-tuple in CS, they are added to CS, and
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Fig. 2. The conflict between the candidates (c,c1,δ, δ1) of the two graphs shown in a)
is solved and a new common subgraph is produced b). Nodes and edges belonging to
the maximum common subgraph c) are: {(a, a1, NULL, NULL), (b, b1, α, α1), (c,
c1, δ, δ1), (d, d1, χ, φ1), (e, e1, ε, ε1)}

new candidates are generated by Update(); otherwise, the Resolve Conflict()
is called to handle the situation. Intuitively, the conflicts are solved by forking
the expansion of the current CS into two common subgraphs where the new
one is obtained by eliminating the pairs of nodes responsible of the conflict
and the subsequent part of the common subgraph.To better understand how
the Resolve Conflict() works, let us consider the example shown in figure
2, where only bold edges are mapped ones. Therefore we have CS SET = {(CS,
CANDIDATES)} and CS= {(a,a1,NULL,NULL), (c,f1,β, β1), (d,c1,χ, χ1), (b,b1,
α, α1)} while CANDIDATES = {(c,c1,δ, δ1), (e,c1,ε, χ1)}. If Pop() selects the
candidate (c,c1,δ, δ1), then both nodes c and c1 are already mapped and the
statement Resolve Conflict() has to be executed. The new pair generated
by Reset() is (CS′, CANDIDATES′), where CS′ = {(a,a1,NULL,NULL), (b,b1,
α, α1), (c,c1,δ, δ1)} and CANDIDATES′ = {(d,d1, χ, φ1), (d,e1, χ, ε1), (e,d1,
ε, φ1), (e,e1,ε, ε1)}, as shown in figure 2 b). CS′ has been obtained from CS
deleting the two elements involving c and c1, and the elements whose nodes are
connected to c or c1 with a path contained in CS. Analogous considerations are
used to obtain CANDIDATES′ from CANDIDATES.

The proposed algorithm is correct if the statement CS from Mapping(m)
produces as output a common subgraph CSm = m, for each input mapping m
corresponding to an MCS. The existence of such m is assured by the procedure
Mappings Set(). In order to prove the previous assertion three results have to
be shown: first, the nodes involved in CSm are an injective function among the
nodes of the two graphs; second, CSm is a common subgraph of the two input
graphs, for each m ∈ MG1,G2 ; third, if m is a MCS, then the node mapping
related to CSm corresponds to the same MCS. A detailed proof of such three
results can be found in [8].
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4 Approximate Maximum Common Subgraph

The computation of the MCS of two graphs is a common approach for comparing
graphs, but its computational costs make the problem not tractable in many
application domains. Most importantly, it is often necessary to insert heuristics in
the matching process to be bale to adapt the process to the characteristics of the
shapes under examination. Let us recall that the MCS is obtained by providing
as input to the procedure CS from Mapping() all the mappings among the nodes
of the two input graphs and by selecting the common subgraph with the largest
number of nodes. A first sensible improvement of the matching process can be
achieved by relaxing the problem setting and allowing a common subgraph to
be accepted also an approximated solution.

Let us consider the example in Figure 2c): here the optimal solution, that
is the MCS, is obtained running the expansion process simply on the pair
m′ = {(a,a1)}. In this case the common subgraph obtained as output from
CS from Mapping(m′) corresponds to the MCS of the two graphs, and the pro-
cess is run on a highly reduced input set of mapping. In general, running the
algorithm on a subset of the initial mapping yields to approximations of the
MCS, but heuristics or semantic knowledge can be used to select the best can-
didate initial mappings. It is clear, indeed, that some nodes are more relevant
than others, depending on the attributes and on the topology of the graph. A
sensible improvement of the computational cost of the process can be obtained
by reducing the number of input mappings, at the cost of accepting solutions
that are not optimal, that is common subgraphs which might be not maximum.
Another important point concerns the type of graphs that are handled. Since the
considered input graph G = (V, E , μV , μE) is directed, each node v ∈ V identifies
a subgraph G′ = (V ′, E ′, μV′

, μE′
) induced by V ′, where V ′ is the set of nodes with

v as ancestor included v itself. The notion of node relevance can be captured
by the subgraph associated to the node: for example, the larger the subgraph
associated to the node, the more relevant the node. With reference to Figure
2c), the node c is more relevant than d and the node a is more relevant than c.
This concept of relevance can be used to drive the selection of the best initial
candidates for the process.

Another useful heuristics can be constructed associating the notion of sub-
graph relevance to the idea of expansion process. For example we might associate
to the pair of nodes (v1, v2) the information about how much the common sub-
graph would expand with the addition of that pair to the subgraph. A distance
function d between two nodes v1 and v2 could be defined which retrieves this
information. The distance d(v1, v2) can be defined involving node and edge at-
tributes and an approximation of the structure of the subgraph related to v1 and
v2. Two examples of distances that can be plugged in the algorithm come from
[9] and [10]. In [9] a topological signature vector χ(v) describing the structure of
the subgraph related to the node v is defined for each node of the graph. The dis-
tance d(v1, v2) corresponds to the euclidean distance between χ(v1) and χ(v2).
In [10] the distance value depends mainly by the node attributes. The distance
d can be used to reduce the number of elements of CS SET. It acts on the selec-
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tion of the CANDIDATES elements and the Resolve Conflict() statement.
The simplest way to use d is to extract the best element (v1, v2, ·, ·) (minimum
distance between v1 and v2) from CANDIDATES and add it to CS if and only
if neither v1 nor v2 are already mapped. If v1 or v2 are mapped, the candidate is
discarded and a new one is extracted until CANDIDATES becames empty. In
this case the Resolve Conflict() statement is never recalled. Another example
of use of d is to add the best candidate (v1, v2) to CS even if v1 and/or v2 are
already mapped if and only if the new mapping has a minor distance than the
previous ones. In both the previous cases the CS SET set corresponds to a single
pair (CS, CANDIDATES).

5 Experiments

In this section the algorithm has been tested on structural descriptors of 3D
objects. A very useful structure for shape description is the Reeb graph, which
has been recently used in several application of shape matching. The Reeb graph
can be coded into a directed acyclic graph with attributes describing the shape
structure of the object [5, 6, 7]. In the experiments presented, nodes having only
incoming or outcoming edges describe protrusions of the object, while the re-
maining nodes describe branching parts. In figure 3 two example of 3D models
and graphs are shown, which represent a horse (Figure 3.a) and a wolf (Figure
3.b). The two models are similar but due to small morphological differences the
two structural graphs are slightly different: the two subgraphs related to the
heads are different and the two front legs of the horse are connected to two dif-
ferent branching nodes, while the two front legs of the wolf are joined to the same
branching node. In this case the MCS could give the optimal solution from the
point of view of the combinatorial structure, but not an optimal solution with
respect to the semantic of the shapes and of their structural descriptors. An ap-
proximate solution works better, and different possibilities have been tried. First
of all, a distance measure d(v1, v2) between two nodes has been experimented
in [7]. It roughly describes the differences between the two subgraph related
to v1 and v2. Each subgraph S is represented by the vector S(V ) = (sub n,
in(v), out(v), sub in(v), sub out(v), sub s(v)), where sub n is the number of

a) b)

Fig. 3. Horse and wolf models together with their graphs
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Fig. 4. Two matching between the horse and wolf graphs. a) the common subgraph
without grouping is: {h → n1, g → m1, d → h1, c → f1, e → e1, n → c1, a → b1, b →
a1, i → o1, l → p1, m → q1}. b) the common subgraph with grouping is: {h → n1, g →
m1, c → h1, e → i1, n → f1, b → c1, a → e1, i → o1, m → q1, l → p1}

nodes belonging to S, in(v) and out(v) represent the indegree and outdegree of
v, sub in(v) and sub out(v) the indegree and outdegree node sum and sub s(v)
the sum of the subgraph edge attributes. The distance d(v1, v2) is defined as
euclidean distance between S(v1) and S(v2).

Two methods for the selection of the starting set of node mapping have
been experimented using the node distance measure defined above. The result-
ing common subgraphs are shown in figure 4. Both the methods are based on the
concept of node relevance mentioned in section 4, and they select all the nodes
whose relevance is bigger than the mean value of the nodes graph relevance. The
initial set of candidates of the first method is obtained generating all the possi-
ble pairs among the selected nodes, that is: {c, d, h, g} for the horse-graph and
{f1, g1, h1, m1, n1} for the wolf-graph. The approximation of the MCS is shown
in Figure 4a). In this case the common subgraph generated by the algorithm
correspond to the MCS. Even if this is a good result for graph matching, it is
not for 3D object comparison because semantically equivalent object parts are
not related between themselves. The mapping {c → f1, e → e1} (Figure 4a))
associates part of the body and a leg of the horse to part of the head and mouth
of the wolf. The second method tested generates the set of initial candidates
grouping the relevant nodes with respect to the attributes values, and these can-
didates are: {g → m1, h → n1, c → h1, d → h1, c → f1, c → g1}. The common
subgraph obtained as output from the algortihm does not correspond to the
MCS (figure 4b)) but, due to the initial node grouping, semantically equivalent
parts of the two objects have been associated.

The previous experiments are mainly based on graph structural analysis,
while node attributes providing geometric information can be considered mod-
ifying the distance function between nodes: d(v1, v2) = w1G S+w2St S+w3Sz S

w1+w2+w3
,

where G S, St S, Sz S ∈ [0, 1]. G S and St S respectively represent the geo-
metric similarity between the node attributes and the structural similarity be-
tween the node subgraphs. Sz S evaluates the similarity between the size of
the sub-parts associated to the nodes, where the size corresponds to the sum of
the lengths of the subgraph edges. Finally, the three weights w1, w2, w3 ∈ [0, 1],
combine the three components of d. G S compares the geometric signatures
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a) b) c)

d) e) f) g)

Fig. 5. Sub-part correspondence among a model a) obtained mixing an horse b) and
a pot c). The mixed-model compared with the the horse d)-e) and with the pot f)-g).
Matched nodes have the same label

associated to v1 and v2. In our experiments the signature of each node is ob-
tained decomposing the sub-part surface into a collection of functions defined
on concentric spheres and using spherical harmonics to discard orientation infor-
mation for each one [11]. Then, the similarity between the subgraph structures
is defined as: St S = in+out+sub n+sub in+sub out

5 , where X = |X(v1)−X(v2)|
max(X(v1),X(v2))

,
Finally Sz S = sub s, where sub s is the sum of the edge attributes of the
subgraph. In figure 5 sub-part correspondences among semantically equivalent
parts has been shown. The algorithm has been used to approximate the common
subgraph minimizing geometric differences between the object sub-parts. Also
in this case the MCS between the two objects should not represent the best
matching.

6 Conclusions

An algorithm for the computation of the MCS between two directed acyclic
graphs has been presented. The algorithm is tailored to encapsulate heuristic
techniques that may yield to an approximation of the MCS only, but that make
the algorithm suitable for applications where graph structural noise may com-
promise the results and computational costs have to be optimized, both in terms
of time consumed and occupied memory space. Different heuristic tecniques have
been described and their effectiveness has been shown and discussed with respect
to shape structural descriptors of 3D objects. The experiments show that the
MCS is not the best solution for the discuussed application domain. The node
relevance, the distance between graph nodes and the way they are used to reduce
the elements of CS SET, produces a common subgraph approximating the MCS
such that it is maximal and that minimizes the geometric and structural graph
differences.
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Automatic Learning of Structural Models of
Cartographic Objects

Güray Erus and Nicolas Loménie

Université de Paris 5, Laboratoire SIP-CRIP5,
45 rue des Saints Pères; 75006; Paris; France

Abstract. A model of the target object is required for the recognition of
cartographic objects in satellite images. We developed a learning system
that constructs the structural models for cartographic objects automati-
cally. Using a database of examples extracted from satellite images, this
system constructs the abstract model of the object in each class. The
images containing the objects are decomposed into primitive figures and
are transformed to Attributed Relational Graphs (ARGs) that are very
appropriate for the representation of structured data. We generated the
object models applying graph-matching algorithms on these graphs. The
quality of a model is evaluated by a specific edit-distance of the examples
to the model.

We tested our system on images of bridges and roundabouts. We
could obtain object models compatible with manually generated models.

1 Introduction

With the spread of high-resolution satellite images, more sophisticated image
processing systems are required for the automatic extraction of information.
In the SIP1 laboratory, two different systems of cartographic object detection
in satellite images have been developed in the frame of a research project of
CNES2. In the terminal step of both systems, a structural model of the target
object is used for comparison in order to determine the class of a candidate. This
model is defined manually, either by region adjacency constraints [1] or by geo-
metrical constraints [2]. Our aim is to generate the model of cartographic objects
automatically using a database of segmented and labeled satellite images. The
originality of this work lies in the application of structural learning techniques
on cartographic objects which are quite complex and variable.

A survey of model-based object recognition is given in [3]. In most of the
existing studies graphs are used to represent the objects. Particularly, Attributed
Relational Graphs (ARGs) are preferred to represent structural data. In our
system, we used ARGs as the basic data structure. Different techniques have
been used to determine the similarity of two images. [4] propose a distance metric

1 Intelligent Perception Systems.
2 French space agency.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 273–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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between two ARGs in order to detect the similar images in an image database.
In [5] a projective transformation invariant representation is used on ARGs for
matching objects under geometric transformations. [6] propose a method for the
automatic learning of a parametric model for modeling a sample distribution
represented by ARGs. They use the Expectation-Maximization algorithm to
estimate the parameters of likeliness. [7] present a method for learning models of
objects represented by ARGs. They introduced a new data structure, Generalized
ARG (GARG), which is an ARG with general attribute values. The aim of the
system is to generate a set of GARGs that cover all the examples.

To transform an image into a graph, the image is represented either by simple
geometric shapes, by its skeleton or by its shock-graph, a representation based on
the medial axis of the object. A review of graph matching methods is presented
at [8].

We applied in parallel two different decompositions using geometric shapes
and the skeleton of the objects. Our system is composed of two modules (Fig. 1).
The pre-processing module uses the segmented and labeled images containing
the target object. We have a database of SPOT5-THR images with a resolution
of 2.5 meters, in which bridges and roundabouts have been extracted and marked
by an expert. The aim of this module is the decomposition of these images using
basic geometric shapes.

In the second module, the decomposed images are firstly transformed into
ARGs. Then, we detect the prototypes, the most frequent representations of the
object, between all the graphs. Using the prototypes, we generate the object
model by finding the Maximal Common Subgraph (MaxCSg) and the Minimal
Common Supergraph (MinCSg)of the prototypes. The quality of the model is
evaluated by calculating the edit distance of the graphs to the model.

The decomposition of images is presented in section 2 and the construction
of the model in section 3. The experimental results are given in section 4. Finally
we indicate our conclusions and future directions in section 5.
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2 Decomposition into Basic Shapes

Using simple geometric shapes, it is possible to obtain a decomposition that
preserves the topology and the spatial relationships of the parts of cartographic
objects. We proposed two different decompositions in parallel, one using circles
and rectangles, and the other using circles and segments. We developed a system
with several parameters representing the threshold values used for determining
the shape characteristics. We set these parameters empirically in such a way
that the final decomposition contains a minimal number of shapes while it is
still representative of the target object. The methods used for detecting the
basic shapes and the results of the decomposition are briefly presented in the
following paragraphs.

The first step of the decomposition is the detection of the circles. Hough
Transform is a classical and robust method used for the detection of simple
shapes like lines and circles. We detected the circles on roundabout images using
this method. The inner regions of the detected circles are erased from the images.

In order to detect the rectangles, we firstly extracted the edges of the object
using a morphologic gradient. We then approximated the edge by line segments.
We applied the algorithm of the cord for the approximation. To detect the par-
allel segment pairs, we used a threshold value that limits the angle between two
segments. The rectangles are extracted from the parallel segments. We elimi-
nated the rectangles that do not satisfy certain shape criteria. The figures that
we obtained were in general non-connected. However, the connections between

Original Images

Decomposition by circles and rectangles

Decomposition by circles and line segments

Fig. 2. Decomposition of the images by geometrical figures
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objects are crucial in the construction of the graphs. For that reason, we applied
a method of elongation to rectangles in order to define their connections.

We used an alternative decomposition using line segments instead of rect-
angles, in order to obtain a better approximation. To extract the segments we
used the thinning algorithm of Zhang-Suen as described in [9]. We converted the
skeleton to line segments using the algorithm of the corde. In order to detect
the connections between segments, a method similar to the method we used on
rectangles is applied .

In Figure 2, we presented some of the images showing the results of the decom-
position. In general, we obtained a satisfactory decomposition appropriate for
the transformation to ARGs. In some of the images we lost connections between
roads and in a few image the result was not representative of the original image.

3 Construction of the Model

The decomposed images are firstly transformed into ARGs. Then we detect
the prototypes between the graphs belonging to the same class of objects. The
model is defined by the mesh bounded by the (MaxCSg) and the (MinCSg) of
the prototypes. Finally, we calculate the edit distance of each graph to the model
in order to evaluate the representative value of the model.

3.1 Construction of ARGs

We represented our objects by ARGs. The characteristics of geometric shapes
are stored in the vertices of the graph and the characteristics of connections in
the edges. The vertex attributes are:

– The type (t) of the vertex chosen from a finite alphabet T = {circle, rect-
angle, segment} of possible types.

– The rectangles have the attributes center, length, width and angle with the
horizontal.

– The line segments have the same attributs with rectangles except the width.
– The circles have the attributes center and radius.

The values of these attributes are integer numbers. The edge attributes are:

– The type of edge which is a pair of types of the vertices it connects.
– The direction of connexion between the components which is discretised by

the set {perpendicular, parallel}.

3.2 Detection of Prototypes

We proposed a heuristic method in order to reduce the number of graphs used in
the construction of the model. In that way, we also eliminate the graphs resulted
from a bad decomposition in the first module. We supposed that between all the
graphs belonging to an object class, as the number of occurrence of a certain
graph increases, this graph becomes more representative of the object. Grouping
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the graphs that are isomorphic and sorting these groups by number of elements,
we obtained a list of the graphes in the order of frequency. From this list, starting
with the most frequent one, we selected a certain number of graphs as prototypes
of the object.

We applied an exact graph matching algorithm in order to detect the isomor-
phic graphs. We did not use all the attributes for the comparison of the graphs,
but only a subset of it that does not contain the numerical attributes. The reason
of such a simplification is twofolds: the numerical values have a large variation
that prevents exact matching between graphs, and also, the values of attributes
like the size and the center depend mostly on the global properties of the object
(for example the scale of the image) that is not possible to be matched using the
structure we defined. The attributes that we used are the type of the vertex,
the type of the edge and the direction of the connection. While the first
two attributes provide a matching between figures, the third attribute is used
for matching the spatial relation of the connected figures.

The values of the numerical attributes of the detected prototypes are missing.
In each group, we detected the mean graph, that is the graph closer to the
cumulative mean of the missing attributes, and we used it to set the missing
values. In this way, we used some of the attributes to match the graphs and
others to find a mean attribute value. Our aim in setting the missing values is
to visualize the obtained prototypes.

3.3 Generation of the Model

In order to find the model, we generate the MaxCSg and the MinCSg of the
prototypes. The model is considered to be the mesh bounded by these two graphs,
that is the set of all the graphs G, such that G ⊆ MinCSg and G ⊇ MaxCSg.

We implemented a recursive algorithm to calculate the MaxCSg of two ARGs
G1 and G2:

MaxCSg(G1, G2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G2 if G2 ⊆ G1

max‖Mi‖{Mi}
where Mi = MaxCSg(G1, Gi), and
Gi = G2 − vi, ∀vi ∈ V ertices(G2) otherwise

We find the MinCSg of two graphs G1 and G2 using their MaxCSg: Let
M = MaxCSg(G1, G2). The MinCSg(G1, G2) is obtained by joining (G1−M)
and (G2 −M) to M .

The numerical attributes of the models have been set using the attributes of
the prototypes as we have done in the detection of the prototypes.

3.4 The Edit Distance of the Examples to the Model

To evaluate the representative power of the generated model, we calculated the
edit distance of each graph to the model. [10] proposed a new distance measure
based on the MaxCSg of two graphs. The advantage of this metric is that there
is no need to define the cost of edit operations.
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The distance of two non-empty graphs G1 and G2 is defined as follows:

d(G1, G2) = 1− ‖(MaxCSg(G1, G2)‖
max(‖G1‖, ‖G2‖)

We adapted the metric to the ARGs by calculating the MaxCSg for the ARGs.
The metric is defined for finding the distance between two graphes. To find the
distance of a graph G1 to the model, we generated G, the set of all graphs covered
by the model and found the minimal distance of G1 to the elements of G.

4 Experimental Results

We tested our system on two classes of segmented images (bridges and round-
abouts) and using two different decomposition. We obtained 4 test groups,
namely: bridge images decomposed by rectangles (BR), bridge images decom-
posed by segments (BS), roundabout images decomposed by circles and rectan-
gles (RR), and roundabout images decomposed by circles and segments (BS).We
used 62 bridge images and 54 roundabout images.

The prototypes that we extracted for each different test group is displayed in
figure 3. We precised the number of prototypes in such a way that the rate of ex-
amples matching with one of the prototypes is higher than a certain threshold. In
average 41% of the images for each test group is matching with a prototype.This
rate is higher in test groups BS and RS . That is the consequence of a more reg-
ular decomposition using segments. We obtained similar prototypes of bridges
using both decompositions. However this is not the case for the prototypes of
roundabouts. This is due to the irregularities in the connections of some of the
roads to the central circle. The decomposition using segments missed some of
these roads.

Figure 4 presents the models generated from the prototypes. The models are
simple and quite similar to manually generated models. They represent the gen-
eral characteristics of the target objects. However the MaxCSg in the RS test
group is incomplete compared with a minimal representation of the roundabouts

a b
a c

d

BR

BS

RR

RS

Fig. 3. The prototypes
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MaxCSg

MinCSg

BR BS RR RS

Fig. 4. The models

in the example images. This shows that a systematic deficiency in the decompo-
sition phase may reduce the quality of the model. For the bridges, we obtained
quite similar models with the two decompositions.

To evaluate the quality of a model, we calculated the edit distance of each
graph to the model of the class it belongs to. According to that criteria, the best
model is the BS with an average edit distance of 0.098. The average distance is
0.1572 for RS , 0.165 for PS and 0.1874 for RS . The cumulative average is quite
low and satisfactory, but this metric can not be taken as a direct measure of the
quality of the model because it does not take into consideration the quality of
the decomposition.

5 Conclusions and Perspectives

This study is a first approach to a difficult problem. Our objective was to develop
a coherent and complete system that would be improved with future extensions.

A very important criteria of our work was to obtain a system that is as
general as possible. We tried to avoid processings specific to a certain class of
object. We could obtain models of bridges and roundabouts similar to manually
generated ones.

The selection of the attributes of the ARGs is the central point of the problem.
We used a representation that is too direct and sharp. The variances of the
geographical objects forced us to limit the number of the attributes we used in
the construction of the model. This limitation reduced the representative power
of our system.

We can propose several refinements and ameliorations. Considering the nu-
merical attributes, using a fuzzy modelisation of the symbolic concepts and in-
tegrating methods issued from qualitative spatial reasoning may enhance the
results of our system. A further step will be to check the robustness of our meth-
ods on non-segmented satellite images in order to combine it with the existing
cartographic object detection systems.
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Abstract. In this paper, an experimental comparison among three structural 
approaches to fingerprint classification is reported. Main pros and cons of such 
approaches are investigated by experiments and discussed. Moreover, the 
effectiveness of their measurement-level fusion is analysed. Finally, a 
comparison among the investigated structural approaches and the well-known 
statistical approach based on “FingerCodes” is reported. 

1   Introduction 

The fingerprint classification task consists in associating a given fingerprint to one of 
the five Henry’s classes [1]. The main aim of this task is to decrease the identification 
time of Automatic Fingerprint Identification Systems (AFIS). These systems are 
aimed to the criminal identification through the recognition of the fingerprints found 
in the crime scene. But the identification time can be very long due to the high 
number of fingerprints in the AFIS data bases (e.g., more than 200 million 
fingerprints in the FBI data base). Fingerprint classification reduces the identification 
time by allowing to compare the given fingerprint with the ones associated to the 
most probable Henry’s class, instead of performing a search on the whole data base. 
As there are five fingerprint classes, a good fingerprint classifier should allow to 
shorten the identification time to one fifth of the time required without fingerprint 
classification. 

Each one of the above Henry’s classes is defined by a particular shape described 
by the flow of epidermal ridges and valleys of the fingertip. Each shape is 
characterized by the different position of the “singular points” named “core” and 
“delta”. Figure 1 gives examples of the five Henry’s classes and the related position 
of the singular points. Unfortunately, the fingerprint classification task is made very 
difficult by several factors. Above the others, the large within-class variability and the 
small between-class separation [1-2]. 

In order to address such issues, many approaches to automatic fingerprint 
classification have been proposed so far. A good survey has been recently reported in 
[2]. For the purpose of this paper, the approaches can be coarsely subdivided in 
structural and statistical [3-12]. The former [3-6] is based on the extraction of a set of 
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characteristic measurements, called feature vector, from fingerprint images and used 
for classification. The latter [6-12] describes fingerprints by production rules or 
relational graphs, and parsing processes or graph matching algorithms are used for 
classification. So far, very few attention has been paid to structural approaches to 
fingerprint classification, mainly due to the lack of simple and effective learning 
mechanisms, and their high computational complexity of the classification phase. 
However, recent works have shown the effectiveness of some structural methods [9-
11], and their promising performance when they are combined with statistical 
approaches by measurement-level fusion methods [6, 10]. In particular, structural 
fingerprint classifiers seem to achieve a good performance for strongly “structured” 
classes, such as the A and W Henry’s classes [10-11] (see figure 1). Moreover, 
reported results showed that the fusion of statistical and structural fingerprint 
classifiers  can provide the performances of many state-of-the-art fingerprint 
classification algorithms [3, 6, 10].  However, in our opinion, the role of structural 
approaches and their effectiveness in fingerprint classification have not yet 
systematically investigated.  

 

A W L R T  

Fig. 1. Examples of the five fingerprint classes of the Henry’s classification: (A) Arch (W) 
Whorl (L) Left Loop (R) Right Loop (T) Tented Arch. The singularity points, named “core” 
and “delta”, are pointed out by squares and triangles, respectively. The “structure” of each 
class is pointed out by regions with homogeneous orientations which converge around the 
singularity points 

This paper is focused on the experimental comparison of the main approaches to 
structural fingerprint classification. In particular, we investigated the approaches 
based on graph-matching [8], dynamic masks [9] and recursive neural networks [6, 
10]. Moreover, the measurement-level fusion of the above structural approaches is 
investigated. Finally, we compared the performance and behavior of the above 
approaches and their fusion with that of a well-known statistical approach based on 
the so called “FingerCodes” [3]. The main goal of our investigation is to start the 
analysis about the advantages and drawbacks of structural methods for fingerprint 
classification, and also to point out some aspects worthy of further investigations. 

The paper is structured as follows. Section 2 describes the graph-based 
representations and methods used for structural fingerprint classification. Section 3 
describes the statistical classifier used for comparison with the structural classifiers. 
Section 4 describes the experiments performed. Section 5 draws some preliminary 
conclusions about our investigation. 
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2   Fingerprint Classification Using Structural Representations 

In this section, we briefly describe the rationale behind the use of structural classifiers 
for fingerprint classification. The use of structural classifiers was introduced by the 
following observation. Each fingerprint class has a “structure” which can be 
“defined” through the identification in the fingerprint image of regions characterized 
by homogeneous direction of the ridges (Figure 1). In particular, such structure is 
related to the topology of partially overlapped subsets of regions “converging” around 
the singularity points (the so-called “core” and “delta”), which are differently located 
from class to class according to the Henry’s classification. It easy to see from Figure 1 
that the “structure” of each fingerprint class can be extracted by segmenting the 
images in regions with homogeneous direction of the ridges. Figure 1 also suggests 
that structural features could be useful to distinguish the A and W classes. In order to 
identify such a structure, all the approaches we investigated compute and segment the 
so called “orientation field”, which is the map of the ridge and valley orientations of a 
fingerprint image. In our experiments, we used the special-purpose segmentation 
algorithm proposed in [12].  

The first issue of the investigated structural approaches is to find an appropriate 
data type to effectively represent the fingerprint structure discussed above. Section 2.1 
describes the data types used for the graph-matching and recursive neural networks 
approaches, which are summarised in sections 2.2 and 2.3, respectively. The dynamic 
masks approach is described in section 2.4. 

2.1   Graph-Based Representations of Fingerprints 

One of the most natural structural representation of fingerprint orientation field 
segmentation (i.e., of the segmentation of the fingerprint image in regions with 
homogeneous orientation of ridge and valley) is a relational graph. Each graph node 
can be associated to a segmentation region and the edges join two nodes according to 
the adjacency relationship of the respective regions [8-12]. The classification 
algorithm based on this fingerprint representation is described in section 2.2. 

Recent works proposed to use directed positional acyclic graphs (DPAGs) to 
represent the fingerprint orientation field segmentation [6, 10]. This data type also 
allows using recursive neural networks [6, 10], a machine learning approach explicitly 
aimed to learn complex data structures [13]. This classification approach is described 
in section 2.3. To create DPAG representation of the fingerprint image segmented on 
the basis of their orientation field, the algorithm we proposed in [10] was used. For 
details about our DPAG generation algorithm, we refer the reader to Ref. 10. 

Both graph-based representations are completed by associating to each node a 
feature vector containing the local characteristics of the regions (area, average 
directional value, etc) and the geometrical and spectral differences among adjacent 
regions (relative positions, differences among directional average values, etc) [10]. 

Figure 2 shows an example of relational graph and DPAG related to the same 
fingerprint orientation field segmentation. For the DPAG representation, the position 
of each node is pointed out by an integer labelling each edge. 
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Fig. 2. Graph-based representation obtained from the segmented orientation field of a 
fingerprint image: (a) DPAG representation obtained from the algorithm described in [10]; (b) 
relational graph representation. Node labels represent the number associated to each region as 
shown in the orientation field and the edge labels represent the position of each child-node 

2.2   Classification by Graph Matching 

The graph matching we used is based on the computation of the graph edit distance 
between the input graph and a set of prototype graphs representing each class. More 
than one prototype graph per class is used. The minimum edit distance associated to 
each class is computed and converted into a posterior probabilities vector. The class 
associated to the maximum posterior probability is selected.  

The edit distance between the input graph and a prototype graph is computed on 
the basis of a given set of graph edit operations. As an example, the node substitution 
or the edge deletion can be defined as edit operations [14]. A positive real-value, 
named “cost”, is associated to each edit operation. Given these edit operations, the set 
of their possible sequences aimed to transform the input graph in the prototype graph 
is computed. The cost of each sequence is the sum of costs associated to each edit 
operation of the sequence. The edit distance is defined as the minimum of such costs. 
The main issue is obviously to find the sequence of edit operations which provide the 
minimum cost. To this aim, a research tree containing all the possible edit operations 
sequences is used. The search of the best sequence (i.e. the minimum cost path into 
the research tree) is performed by an algorithm similar to A* [14]. Further details can 
be found in [11, 14]. 

2.3   Classification by Recursive Neural Networks 

Recursive neural networks (RNNs) are machine learning architectures which are 
capable of learning hierarchical data structures [13]. The input to the network is a 
labeled DPAG U, where the label U(v) at each node v is a real-valued feature vector 
associated with a fingerprint region [6, 10]. A hidden state vector nvX ℜ∈)( is 
associated with each node v, and this vector contains a distributed representation of 
the sub-graph dominated by v (i.e., all the nodes that can be reached starting from a 
directed path from v). The state vector is computed by a state transition function f that 
combines the state vectors of v’s children with a vector encoding the label of v. 
Computation proceeds recursively from the frontier to the “super-source” (the node 
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dominating all other nodes). The basic step of such computation is 0)( =vX , if v is a 
missing child. Transition function f is computed by a multi-layer perceptron, that is 
replicated at each node in the DPAG, sharing weights among replicas. Classification 
with recurrent neural networks is performed by adding an output function g that takes 
as input the hidden state vector X(s) associated with the super-source s. Function g is 
also implemented by a multi-layer perceptron. The output layer uses the softmax 
functions (normalized exponentials), so that Y = g(X(s)) can be interpreted as a vector 
of conditional probabilities of classes given the input graph, i.e., )|( UiCPYi == , 
being C a multinomial class variable. Training relies on maximum likelihood and uses 
a gradient-descent approach to weights optimization of functions f and g called “back-
propagation through structure” [13]. Further details can be found in [6, 10, 13]. 

2.4   The Dynamic Masks Classification Method 

This method was introduced by Cappelli et al. to overcome the large variability of 
segmentations of similar fingerprints [9], which comes out when the segmentation 
algorithm described in [12] is applied. The basic idea of this approach is to perform a 
“guided” segmentation of the orientation field of the fingerprint image in order to 
reduce the variability during the segmentation process [9]. 

To this end, five filters, called “dynamic masks”, one for each class, “guide” the 
orientation field segmentation, so producing a class-dependent segmentation. Such 
dynamic masks can be regarded as “prototypes” of images segmented by the 
orientation field. Using these filters the number of segmentation regions and the 
coarse region shape are fixed. Each dynamic mask is obtained by the following four 
steps: (1) for each class, selection of a set of representative fingerprints, (2) 
computation of the respective orientation fields, (3) application of a genetic algorithm 
to segment the orientation field and, finally, (4) identification of an “average” 
ensemble of fixed and mobile vertices and segments that define the mask. Such 
vertices are located around the singularity points (“core” and “delta”), according to 
the fingerprint structure showed in figure 1. 

To classify fingerprints, the orientation field of an input fingerprint is segmented 
according to the five dynamic masks (one for each class). For each mask, a “cost” 
provides a measure of the difficulty of the guided segmentation process. Accordingly, 
the lowest cost means that the segmentation process can easily produce a segmented 
image very similar to the used mask. The cost vector is then converted into a posterior 
probabilities vector. The class associated to the maximum posterior probability is 
associated to the fingerprint. Further details can be found in [9]. 

3  The Selected Statistical Approach 

In order to analyse how much the structural approach can be useful for fingerprint 
classification, we compared the performance of the above structural classifiers with 
that of a well known statistical classifier, using the “FingerCode” as feature vector 
[3]. In the following, we summarise very briefly the main steps to compute the so 
called “FingerCode” from a fingerprint image. A circular tessellation is defined 
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around the “core” point, and subdivided in 48 sectors. A set of 4 pass-band Gabor 
filters, with orientation selective characteristics, is applied. The absolute deviation of 
each filter response is computed on each sector, so obtaining a 4x48 real-valued 
feature vector, called “FingerCode”. Further details can be found in [3]. 

We used the multi-layer perceptron as statistical classifier using FingerCodes [3]. 

4   Experimental Results 

In this section, we report results on the performance of structural classifiers described 
in section 2. 

We firstly compared the performance of structural classifiers, in order to analyse 
their main pros and cons for fingerprint classification. Then, we investigated their 
measurement-level fusion. The term “measurement-level fusion” means that the 
combination rules are applied to the classifiers’ outputs, which can be regarded as 
estimations of the posterior probabilities of each class given the input pattern [15]. 
The fusion of each vector of probabilities produces a novel posterior probabilities 
vector which should allow to exploit the complementarity among classifiers and, 
consequently, to improve the classification performance [15]. We investigated the so-
called “fixed” rules, as the mean and the product rule (i.e. the outputs of each 
classifier are averaged or multiplied), and the “trained” rules. In particular, we 
investigated the so-called “stacked” approach, where the outputs of each classifier are 
considered as a novel feature vector. The classification is made using an additional 
classifier [15]. The additional classifiers we selected are the K-nearest neighbour 
(KNN) and the multi-layer perceptron (MLP). 

Finally, we compared the performance of structural classifiers and their fusion 
with that of the statistical classifier using FingerCode as feature vector (section 3). 

4.1   The Dataset 

The well known NIST-4 dataset, commonly used for benchmarking fingerprint 
classification algorithms, was used for experiments. This data base contains 4,000 
fingerprint images subdivided into five fingerprint classes (A, L, R, W, T). In 
particular, the first 1,800 fingerprints (f0001 through f0900 and s0001 through s0900) 
were used for individual classifiers training. The next 200 fingerprints were used as 
validation set, to perform early stopping of the neural classifiers (RNN and MLP) 
during the learning phase, and to train the classifiers of the stacked approach to 
classifier fusion. The last 2,000 fingerprints were used as test set.  

4.2   Performances of Individual Classifiers 

Table 1 reports the class percentage classification accuracies (second to sixth 
columns) and the overall classification accuracy (seventh column). The second row is 
related to the dynamic masks method (“masks”), the third one to the recursive neural 
networks-based approach (“RNN”), and the fourth one to the graph matching 
approach (“GM”). 
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Table 1. Confusion matrix for the dynamic masks method (“masks”), the recursive neural 
networks (“RNN”), and the graph matching approach (“GM”). Percentages of the class 
accuracies and the overall accuracy of the individual classifiers on NIST-4 test set are shown 

 A L R T W Overall
Masks 48,10 84,46 82,14 66,00 78,36 71,45 
RNN 90,71 79,08 83,30 36,15 81,41 76,75 
GM 71,85 62,32 69,43 52,74 66,25 65,15 

The best performance is exhibited by the RNN classifier (table 1, seventh 
column). This is mainly due to the fact that RNNs do not need of class prototypes, 
because class representations are automatically learnt by examples. Therefore, RNNs 
are able to better handle the intrinsic small class-separation of fingerprints, which 
make  difficult to find a representative set of class prototypes to use with GM. 

 Although the GM classifier performed worse than the RNN on average, their 
behaviour appears to be similar. Both GM and RNN performed well for the A class, 
and exhibited the worst performance for the T class of fingerprints. The good 
performance on class A confirms that structural features could be useful to distinguish 
strongly structured classes. Accordingly, it can be hypothesised that the performance 
of the GM approach could be strongly improved if a more robust orientation field 
segmentation algorithm could be designed, or if effective methods for class 
prototypes selection would be available.  

The dynamic masks classifier performed quite differently with respect to the 
others. In particular, the performance on the A class is very low. In our opinion, such 
a low performance can be explained with the absence of singularity points in the A 
class (figure 1), which make quite difficult to design an appropriate dynamic mask for 
that class. With regard to this issue, it should be noted that the performance on the 
other classes, which exhibit at least two singularities, is definitely higher.  

4.3   Measurement-Level Fusion of Structural Classifiers 

First of all, the complementarity among the investigated structural classifiers was 
investigated using the so called “oracle”, that is, the “ideal” combiner able to select 
the classifier, if any, that correctly classifies the input pattern. It should be noted that 
the oracle accuracy is usually a very optimistic estimate of the performance 
achievable with classifier fusion rules. The performance of the oracle is shown in 
table 2. The first column shows the “fused” classifiers (the percentage accuracy of the 
best individual classifier is reported in brackets), the second column shows the 
performance of the related oracle. 

Table 2 points out the strong complementarity between dynamic masks and the 
other structural classifiers (second and third rows). Such fact could be already 
hypothesised on the basis of results showed in the previous section (table 1).  

It is also worth noting that the highest classification rate can be potentially 
achieved by combining all three investigated structural classifiers. This means that 
each classifier can significantly contribute to the performance improvement. 
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Table 2. Percentage accuracy of the oracle by fusing the classifiers indicated in the first 
column. The performance of the best classifier is reported in brackets  

FUSION of Oracle
Masks-RNN (76,75) 91,1 
Masks-GM (71,45) 89,2 
RNN-GM (76,75) 86,1 
Masks-RNN-GM (76,75) 94,1 

Table 3 shows the performance of individual classifiers and their related 
measurement-level fusion with different combination rules. 

Table 3. Percentage accuracy of the measurement-level fusion of the investigated structural 
classifiers by the mean rule, the product rule, multi-layer perceptron (MLP) and K-nearest 
neighbour (KNN). The overall accuracy of the best individual classifier is reported in brackets 
in the first column 

FUSION of Mean Product MLP KNN 
Masks-RNN (76,75) 80,57 79,15 83,37 81,74 
Masks-GM (71,45) 79,09 77,77 72,58 79,76 
RNN-GM (76,75) 76,09 76,70 76,50 76,60 
Masks-RNN-GM (76,75) 82,40 82,20 83,37 83,62 

The best performance is achieved by the fusion rules based on KNN when all the 
three structural classifiers are combined. But the simple mean rule also gives a good 
performance (table 3, fifth row). Moreover, there is not so much difference between 
this result and that of Masks-RNN classifiers fusion by MLP (table 3, second and fifth 
rows). This result points out that the contribution of graph matching classifier is 
difficult to exploit, probably because of the low performance of this approach. On the 
other hand, reported results points out the high complementarity between the dynamic 
masks and RNN classifiers. The improvement of the classification performance is 
about 7% and, according to the oracle results, there is still room for further 
improvements (table 2, second row). 

4.4   Comparison Between the Structural Classifiers and the Statistical Classifier 

Table 4 reports the accuracy on the test set of the statistical classifier mentioned in 
Section 3, that is, the multi-layer perceptron using FingerCodes. First of all, Table 4 
shows that the overall accuracy of the statistical classifier is higher than the one of 
any structural classifiers and their combination. However, it is evident from tables 1 
and 4 that, for the A class, the structural classifiers perform definitely better than the 
statistical one (except for the dynamic masks method).  

In order to investigate the advantages of structural approaches for discriminating 
classes with a clear structure, for which standard statistical classifiers often perform 
not well, we analysed in detail the confusion degree between the A and T classes. 
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Table 4. Percentage class accuracies and overall accuracy of multi-layer perceptron trained 
with FingerCodes on NIST-4 test set 

 A L R T W Overall 
Statistical classifier 80,51 91,84 89,49 79,13 89,39 86,01 

Table 5 shows the confusion degree between the A and T classes (i.e., the 
percentage of fingerprints of the A class misclassified as T class fingerprints) of the 
individual structural classifiers, their best fusion, and the statistical classifier. It 
should be noted that the confusion among such classes is a well-known issue for the 
state-of-the-art statistical classifiers. Table 5 shows that structural approaches can be 
useful to recognize strongly structured fingerprint classes, such as the A class. Finally, 
although the dynamic masks and the GM classifiers do not outperform the statistical 
classifier individually, Table 5 shows that their fusion definitely improve the  
performance. 

Table 5. Percentage of A-T classes confusion degree of the individual classifiers (masks, RNN, 
GM), their best fusion, and the statistical classifier. The best fusion has been reported 
accordingto the best overall accuracy showed in table 3 

Classifiers A – T confusion degree
Masks 19,76 
RNN 2,65 
GM 19,37 

Best fusion Masks-RNN 4,54 
Best fusion Masks-GM 5,02 
Best fusion RNN-GM 2,88 

Best fusion Masks-RNN-GM 5,20 
Statistical classifier 16,71 

5   Conclusions 

In this paper, an experimental comparison among three structural approaches to 
fingerprint classification was described. Some pros and cons of the use of dynamic 
masks method, recursive neural networks and graph matching were investigated by 
experiments and compared with those of a statistical classifier based on FingerCodes. 

Experimental results appear to confirm that structural approaches can perform 
better than statistical ones for the strongly structured fingerprint classes, such as the A 
class. Moreover, their fusion can help in improving classification performances and, 
in particular, to reduce the problem of A-T classes confusion degree, which is a well-
known issue for currently used statistical classifiers. 

Although definitive conclusions cannot be drawn on the basis of the above limited 
set of experiments, we believe that this paper can contribute to start the discussion 
about advantages and drawbacks of structural methods for fingerprint classification, 
and also to indicate some aspects worthy of further investigations. 
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Denis Arrivault1,2, Noël Richard1, Christine Fernandez-Maloigne1,
and Philippe Bouyer2

1 Laboratoire SIC - CNRS - FRE 2731,
SP2MI, Boulevard Marie et Pierre Curie - F-86 962 Futuroscope Cedex,

2 RC-SOFT , Domaine de la Combe - BP39 - F-16 710 Saint-Yriex
denis.arrivault@etu.univ-poitiers.fr

philippe.bouyer@rcsoft.fr

Abstract. In this article we try to make different kinds of informa-
tion cooperate in a characters recognition system addressing old Greek
and Egyptians documents. We first use a statistical approach based on
classical shape descriptors (Zernike, Fourier). Then we use a structural
classification method with an attributed graph description of characters
and a random graph modeling of classes. The hypothesis, that structural
methods bring topological information that statistical methods do not,
is validated on Greek characters. A cooperation with a chain of classifiers
based on reject management is then proposed. Due to computation cost,
the goal of such a chain is to use the structural approach only if the
statistical one fails.

1 Introduction

This work can be classified as old characters recognition aided systems. It is a
part of an Eureka project named COROC1, held by the RC-Soft company.

In general, the character recognition systems consist of two steps:(a)features
extraction and (b)classification of the feature vectors into a number of class.
There are mainly two different types of features, the ones extracting from the
whole character image and the others that are describing only parts of it (strokes
or primitives). The first feature family is integrated in the statistical recognition
approaches, using classifiers as HMM, neural networks or SVM([1]). A good
survey of this first feature family can be found in [2]. The second features family
are often used with a structural description of the characters like graphs ([3], [4])
or bayesian networks ([5]) for example. Many combinations of those features and
classifiers have been made for optimizing the overall recognition rates. Features
can be mixed like in [6] and multiple classifiers systems can be used ([7], [8]).

1 Cognitive Optical Recognition Old Characters.
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Fig. 1. Greek document example(a), functional chart of cooperation process(b)

The idea , we presents in this article, is to combine both features and classi-
fiers for solving the problem of old greek characters (figure1(a)). Our statistical
recognition methods are classical in pattern recognition systems and OCR. They
include different shape descriptors (Hu, Zernike, . . . ) and supervised statistical
classifiers (KNN and Bayesian). The second technical process we use is based
on a graph extraction which describes the character skeleton. Such an informa-
tion is at the same time more complex and more complete. That is why we try,
by combining both approaches, not only to optimize calculation and decision
cost but also to be able to validate the decision hypothesis. Fig.1(b) is a global
chart of the cooperation chain, based on a cascaded-representations approach
according to Alpaydin & Al([9]), which will be presented in section 4.

In a first section, we develop the statistical level which give the starting
hypothesis. In the second part we present the complementary method based
on a structural description of the character. Before the results part and the
conclusion, we explain in details the cooperation strategy.

2 Statistical Approach

2.1 Principle

Statistical methods are classical in pattern recognition. They describe the geome-
try of a shape by mathematical descriptors and use statistical tools for classifying
the character in the attributes space.

In the numerous existing descriptors, we have chosen to keep Fourier and
Zernike moments which describe both contour (Fourier) and region (Zernike).
Those two types of descriptors give an attributes vector which is insensitive to the
main geometrical transformations (scaling, rotation...). As they are widely used
in the pattern recognition community, we will not described here the moments
calculation. One can refer to [10], [11] or [12] for further explanations.
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2.2 Statistical Classification

We use two types of classification according to the thesaurus size.
For the thesaurus with more than 10 elements in each class, we use a paramet-

ric classification after a data reduction made by a principal components analysis.
Distributions are supposed to be Gaussian (eq.1) and the Bayes law gives the a
posteriori probability (eq.2).

p(X|ωi) = (2π)− d
2 |Σi|−1e(− 1

2 (X−X̄i)T Σ−1
i (X−X̄i)) (1)

where X̄i is the mean vector of the class ωi and Σi is its variance-covariance
matrix.

The p(ωk|X) estimation is done with the Bayes law :

p(ωi|X) =
p(ωi)p(X|ωi)

p(X)
(2)

For the thesaurus with less elements we use the K-Nearest-Neighbors classifier
which is a non-parametric classification. The a posteriori probability is then
estimated like in eq.3.

p̂(ωi|X) =
p̂(X, ωi)∑C

j=1 p̂(X, ωj)
=

ki

k
(3)

The decision in both approaches is done by a minimization of the a posteriori
probability.

3 The Structural Classification

From a general point of view, the structural classification uses a decomposition
of the shape into primitive objects (points and strokes) for describing its relative
arrangements. Many types of modelings allow to manipulate those structures.
Topological maps for example are interesting tools for describing the spatial
organization of the shape [13]. Nevertheless, to our knowledge, there is no robust
similarity measurements between topological maps. That is why we have chosen
adjacency graphs structures for our modeling. We use attributed graphs with
topological information as attributes.

The adjacency graph of a character is built by the description of relations be-
tween interest points (figure 2(a)). Interest points in our case are end points, in-
tersection points and inflexion points extracted from the skeleton of the
character.

For comparing two graphs we associate attributes to vertices and edges. We
detail this structure in the first section of this paragraph. Each class of the the-
saurus is then modelized by a random graph. Those random graphs are detailed
in the second section. Finally the third section explains the graph matching and
the classification used.
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3.1 Character Modeling : Attributed Graph

The construction of a graph from a character is made in three steps. First the
skeleton is calculated, then the interest points are extracted and finally the at-
tributes are evaluated. The skeleton is a simplification of the shape ([14]) where
all strokes have a unit thickness. Among all the skeletonization methods ([15]),
only the ones able to give plainly 8-connected skeletons have been considered. Ac-
tually, the extraction of end and intersection points from 8-connected skeletons
is quite simple. It can be easily done with morphological hit-or-miss operations
using suitable masks. The skeletonization used in our work is the Zhang & Wang
[16] method which is at the same time perfectly 8-connected and fast.

For obtaining better recognition results we have extended the intersection
points class by adding inflexion points. We do not detail the calculation process
which is quite complicated and is not the subject of this paper.

The figure2(a) presents some skeletons obtained with the Zhang & Wang
method. The detected points are set in black.

Fig. 2. Skeletons and interest points(a), Vertex attributes(b)

The attributed graphs are then built by assimilating the interest points to
vertices. The edges represent the lines which connect the points.

The attributes chosen for weighting the edges and the vertices describe the
topology of the skeleton. Thus, the attributes associated to vertices are the polar
coordinates of the points in a base with the gravity center as reference and the
least square line as principal axis. We keep the sines and cosines (rather than the
angle for computing reasons) and the distance to gravity center. It gives three
attributes between 0 and 1 after normalization (fig.2(b)).

The attributes associated with edges are the curvature (ratio between vertices
distance and arc length) and the ratio between the arc length and the longest
arc in the skeleton. Those attributes have values between 0 and 1. This modeling
allows loops integration which are described as an edge between the same vertex
and with null curvature.
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Fig. 3. Graph matching

From a formal point of view ([17]), an attributed graph is described as follow.
Let us define :

– Σv = {vk|k = 1, · · · , n} a set of vertices,
– Σe = {eij |i, j ∈ {1, · · · , n}} a set of edges,
– γv : Σv → Πv a vertex interpreter assigning nav attributes to a vertex,
– γe : Σe → Πe an edge interpreter assigning nae attributes to an edge.

Πv represents the set of legal attribute-value pairs for vertices and Πe the
set of legal attribute-value pairs for edges. In our case nav = 3, nae = 2 and all
attributes have values in [0, 1].

An attribute graph is defined as a pair (V, A) where V = (Σv, γv) is called
attributed vertices set and A = (Σe, γe) is called attributed edges set.

3.2 Modeling of the Thesaurus : Random Graphs

The random graph is built for modelizing a class.
A random graph is defined in the following way : ([18], [19]):

– Σω = {ωk|k = 1, · · · , n} a set of vertices,
– Σε = {εij |i, j ∈ {1, · · · , n}} a set of edges,
– γω : Σω → Ωω a random vertex interpreter,
– γε : Σε → Ωε a random edges interpreter,
– P : a probability law for random vertices and edges.

Ωω and Ωε are two sets of random variables. In our case those sets are com-
posed by respectively three and two random variables defined in [0, 1].

A random graph is also a triplet (W, B, P ) where W = (Σω, γω) and
B = (Σε, γε).

We call the attributed graph G = (V, A) a realization of the random graph
R = (W, B, P ) if there is a monomorphism μ : G → R such than for ωi and εkl

of R, ai = γv(μ−1(ωi)) and bj = γe(μ−1(εkl)), then the probability for G to be
a realization of R by μ is given by :

PR(G|μ) = PR

(∧n
i=1(αi = ai) ∧

∧m
j=1(βj = bj)

)
= P (a1, · · · , an, b1, · · · , bm)

(4)

where the αi = γω(ωi) are the random vertices of R and the βj = γε(εkl) are the
random edges of R.

Practically, it is not easy to estimate the probability P . We have to do an
assumption that random variables of vertices and edges are independent with
the three following hypothethis :
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1. the vertices αi are independent from each others,
2. a random edge βj is independent from all vertices except its own two vertices,
3. the conditional distributions {βj |αi = ai, ∀i} are independent from each

others.

Then it is demonstrated ([17]) than equation 4 becomes :

PR(G|μ) =
n∏

i=1

PR(αi = ai)×
m∏

j=1

PR(βj = bj |αk = ak, αl = al) (5)

where αk and αl are the random vertices connected by βj .
Each thesaurus class is described by a random graph which structure is de-

fined by a model (selected by an expert). The random variables distributions
are estimated from the simple graphs attributes of the class and a normality
hypothesis.

3.3 Matching and Classification

In the learning phase and in the recognition phase, a monomorphism between
a simple graph and the random graph model is needed. In order to simplify
this process, we decide to use a graph matching approach. The attributes of the
model graph are the mean of all the realizations of the random variables. Thus
the problem becomes a classical problem of inexact graph matching.

Many algorithms were developed for solving such a problem. Among those
algorithms, the one developed by Chipman & Ranganath ([20]) using a fuzzy
relaxation is specially efficient. It first builds a matching graph where vertices
represent a matching combination of two vertices (one from each graph) and
edges a matching combination of two edges. Each vertex and edge is associated
to a weight which is a similarity measurement between the vertices and the edges
to match. The weights are reevaluated loop after loop by a classical relaxation
rule until they converge. The matching solution is obtained by extracting the
maximum clique (with the biggest weight) which conserves the structure of the
input graphs.

Nevertheless this algorithm has a main drawbacks. It rather converges on a
solution which matches vertices pairs connected by an edge. It is a huge limitation
because of the type of characters processed, which are very noisy. And noise often
introduces interfering vertices in the middle of an edge. The structural methods
of classification are very sensitive to a noisy skeleton, cuttings or spurs. These
defaults come from preprocessing and writers characteristics. For solving these
problems, we can transform the graphs by applying local transitive closings in
order to build what we call “virtual edges”. The virtual edges are obtained by
adding simple edges (we add the attributes and re-normalize them). Two local
transitive closings give virtual edges with a deepness of three. They are built by
adding three simple edges. During the matching operation we allow the matching
of a simple edge with a virtual edge.

The integration of such a matching with the Chipman & Ranganath’s algo-
rithm gives better results. For instance in figure 3, the simple matching give the
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following combination of vertices (g1 is the skeleton on the left and g2 the one
on the right) : (g1 : 0, g2 : 0), (g1 : 1, g2 : 2), (g1 : 2, g2 : 3), (g1 : 3, g2 : 6).
With one local transitive closing (allowing virtual edges with a deepness of two),
the combination of vertices becomes : (g1 : 0, g2 : 0), (g1 : 1, g2 : 2), (g1 : 2, g2
: 3), (g1 : 3, g2 : 7), which is more realistic.

After the matching, the recognition is done by calculating the a priori prob-
ability P (X|ωi) = P (G|μ) with the equation 5. The a posteriori probability
P (ωi|X) comes from the Bayes law (eq.2).

4 Cooperation Process

The process of cooperation is detailed in the chart of figure1(b).
The thesaurus size drives the statistical classifier choice. The parametric

method is used with big thesaurus (with at least 10 elements in each class).
After the statistical classification, the character is recognized or rejected if the
a posteriori probability of the most probable hypothesis is too low [21]. If the
rejection criteria (eq.6) is satisfied, then the decision is rejected.

δ(X) = maxj{P (ωj |X)} ≤ (1− a) (6)

where a is the error probability obtained by training or by an expert evaluation.
We took 0.5.

In the following tests, as the classification is totally supervised, we did not
use the distance reject.

If the statistical hypothesis is rejected, a structural recognition is made.

5 Discussion, Results

Two sets of tests were generated. We first have tried to validate our approach
with a thesaurus of Greek characters drawn by the hand by four different writ-
ers. This thesaurus has been filled with 17641 characters divided into 42 classes.
15641 characters have been used for the training step and 2000 for the recognition
step. The results obtained does not show any difference between the statistical
approach alone and the cooperative approach (9, 4% of bad recognitions for the
first one and 9, 2% for the second one). Nevertheless we see an interesting differ-
ence in the results of both methods. The figure 4(c) gives the differences (Δ%
of good recognitions rates) between the cooperative approach and the statis-
tical one ((%coop − %stat)). If globally the results are the same, we see that,
class by class, they are very different. For example for the classes n13 and n30,
the cooperation gives better results in the first case and worst results in the
second case.

The figure 4(a) gives two examples (n30 and n4) of characters skeletons
confusing the cooperative method but well recognized by the statistical one (the
recognition results are on top, the true characters are on bottom), while the
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Fig. 4. Skeletons confusing the cooperative approach (a) and the statistical approach
(b) (true characters on bottom and confusions on top). (c) represents the detec-
tion differences between cooperative and statistical classification with the handwritten
thesaurus

Fig. 5. Results in % of bad recognitions for the old Greek thesaurus(a), good recog-
nitions rates difference between cooperative and statistical classifications for the old
Greek thesaurus(b)

figure 4(b) gives two examples (n13 and n17) of characters skeletons confusing
the statistical method but well recognized by the cooperative one.

Secondly, we have realized a set of tests with a thesaurus of old Greek char-
acters extracted from five old handwritten documents of different times. This
thesaurus has been filled with 1447 elements divided into 26 significant classes.
Regarding to the inhomogeneity of the elements distribution into classes, a cross-
validation method has been used for these tests. We have randomly exctracted
5 groups of 200 elements from the thesaurus. Each group has been used alter-
natively for the recognition while the other groups and the rest of the thesaurus
were used for training. This validation method gives a mean recognition error
and a standard deviation. The figure 5(a) is a synthesis of the comparative
results between the classification methods with and without cooperation. The
figure 5(b) gives the differences (Δ% of good recognitions rates) between the
cooperative approach and the statistical one ((%coop−%stat)).
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With this set of tests and the first one, we notice that our cooperative ap-
proach is at least non-redundant comparing to the statistical one. The global
performances are not significatively different but the results are. Nevertheless,
the structural classification is not good enough for being complementary with a
statistical approach. First the Gaussian modeling for the attributes distributions
in the random graphs is too limitative with small thesaurus. Second, a work has
to be done on interest points and attributes choices in order to have less noise
dependent graphs and more topological information.

6 Conclusions and Perspectives

In this paper a classification of old characters by a cooperation between struc-
tural and statistical approaches has been introduced. The specificity of the
COROC project, which is working with big and small thesaurus, has forced
us to think about this sort of complementary methods.

The results obtained show that our cooperation is interesting. It brings new
information but it is not discriminant enough. It is mainly due to two reasons.

First, the performances of the structural classifier alone are not good enough.
We can explain it by the independence approximations between random variables
or by the lack of robustness of the matching algorithm regarding to noise and
attributes choice. That is why we are working on a fuzzy approach which could
complement the probabilistic one currently used, and on a new structure for the
graphs which will better represent the topological information, and decrease the
noise influence. We actually want to introduce a hierarchy between vertices and
arcs by defining an influence measurement between them which will weight the
matching step.

Secondly, the cooperation can be optimized. We want the algorithm to be able
to adapt its own parameters (like thresholds or matching parameters) according
to the thesaurus used.
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Abstract. An important topic in pattern recognition is retrieval of can-
didate patterns from a database according to a given sample input pat-
tern. Using graphs, the database retrieval problem is turned into a graph
matching problem. In this paper we propose a method based on decision
trees to filter a database of graphs according to a given input graph. The
present paper extends previous work concerned with graph and subgraph
isomorphism to the case of error-tolerant graph matching.

1 Introduction

Graphs play an important role in structural pattern recognition. Besides com-
paring two given patterns, it is often required to match an input pattern against
a database of known patterns. If graphs are used to represent structural data,
the task of matching patterns is turned into a problem of graph matching. Graph
matching is used in a variety of applications, for example document processing
[1], image analysis [2] and video analysis [3]. Graph matching is attractive for
pattern recognition problems since graphs are a universal representation formal-
ism. It is however a computationally expensive approach. If databases of model
graphs are used, an additional factor proportional to the size of the database
is introduced in the overall complexity of the matching process. A variety of
mechanisms have been proposed to reduce this factor when large databases are
involved [4, 5, 6, 7]. In this paper we propose an approach based on machine
learning techniques.

In the proposed approach graphs are represented by features which can ef-
ficiently be extracted. These features are used to perform a filtering on the
database. A filtering procedure is a method which performs a quick and inex-
pensive reduction of the initial graph database size with respect to a given input
graph. The aim of database filtering is to reduce the number of graph candidates
in the database that need to undergo an expensive, full fledged graph matching
process. A graphical illustration is shown in Figure 1.

The work documented in this paper extends previous studies on graph
matching performance and graph database filtering (see [8, 9]). While the works
reported in [8, 9] were restricted to the problem of graph- and subgraph-
isomorphism, the approach presented in this paper is concerned with error-
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Fig. 1. Illustration of the filtering procedure in the database matching process

tolerant graph matching. In the remainder of this paper, the term ’graph match-
ing’ will be referred to in a general context, describing exact matching (such as
graph and subgraph isomorphism) as well as inexact matching (graph distance
computation and error-tolerant matching).

In the next section, we briefly introduce terminology and graph features used
in this study. Then, we show how the concept of graph representation by means
of feature vectors can be combined with the decision tree filtering approach.
Experimental results will be presented in Section 4, and conclusions drawn in
Section 5.

2 Terminology and Graph Features

In this work, structural data or patterns are represented as graphs. A graph is
defined as a four-tuple g = (V, E, α, β), where V denotes a finite set of nodes,
E ⊆ V × V is a finite set of edges, α : V → LV is a node labelling function, and
β : E → LE is an edge labelling function. LV and LE are finite or infinite sets of
node and edge labels, respectively. (Note that this work focuses only on directed
graphs; however, the same ideas can be applied to undirected graphs as well.)
A subgraph gs = (Vs, Es, αs, βs) of a graph g is a subset of its nodes and edges,
such that Vs ⊆ V , Es = E ∩ (Vs × Vs), αs(v) = α(v) and βs(e) = β(e). Two
graphs g and g′ are isomorphic to each other if there exists a bijective mapping
u from the nodes of g to the nodes of g′, such that the structure of the edges as
well as all node and edge labels are preserved under u. An isomorphism between
a graph g and a subgraph g′

s of a graph g′ is called a subgraph-isomorphism from
g to g′. Given two graphs g1 and g2, a common subgraph is defined as a graph
g such that a subgraph isomorphism exists from g to g1 as well as from g to
g2. A common subgraph g of g1 and g2 is called a maximum common subgraph,
mcs(g1, g2), if no other common subgraph of g1 and g2 exists with more nodes
than g. (In the remainder of this paper we will use the abbreviation mcs for the
maximum common subgraph mcs(g1, g2) of two graphs g1, g2 if the context is
clear.) Note that the mcs is not necessarily unique for two given graphs g1, g2.

In graph matching, it is often required to specify the distance δ between two
given graphs. There exist a wide variety of distance functions on graphs (see
[10, 11, 12, 13]). The work presented in this paper is based on a distance function
which uses the maximum common subgraph of two graphs. It is defined as shown
below:
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δ(g1, g2) = 1− |mcs(g1, g2)|
max(|g1|, |g2|) (1)

Note that this function is known to be a metric (see [10]). Furthermore, in
[14, 15] the authors prove that distance δ is equivalent to the well-known graph-
edit distance (see [5, 11]) under a certain class of cost functions. Hence, the work
presented in the following can be directly related to graph-edit distance as well.
In the remainder of this paper, δ will always refer to the distance function defined
above.

In this study, feature vectors are used to represent graphs. Motivated by the
graph-distance function introduced above, we will focus on features containing
information on the number of nodes in the graph. Specifically, we will analyze the
number of vertices in a graph with a given label, and use the following notation:

f(a, g) : number of vertices in graph g with label a

Based on this feature, an estimate on the maximum possible size of the mcs of
two graphs g1, g2 can be given. The idea is straightforward. Assume that for two
graphs g1, g2 feature f(a, g) has been extracted for all labels a ∈ LV . Further
assume, without loss of generality, that all nodes in the graphs are labelled. The
number of nodes |mcs(g1, g2)| in the maximum common subgraph of g1, g2 is
given by

|mcs(g1, g2)| =
∑

a∈LV

f(a,mcs(g1, g2))

(Note that by definition a node is only allowed one label.) The sum of the values
of feature f(a, g) in the mcs is bounded by:∑

a∈LV

f(a,mcs(g1, g2)) ≤
∑

a∈LV

min (f(a, g1), f(a, g2))

Intuitively speaking this means that per node label ’a’ the value of feature
f(a,mcs) cannot be larger than the minimum value of that feature in graphs
g1 and g2. Hence, using feature f(a, g) an estimation |mcsmax| on the maximum
size of the mcs of two graphs (g1, g2) can be given:

|mcs(g1, g2)| ≤
∑

a∈LV

min (f(a, g1), f(a, g2)) = |mcsmax(g1, g2)| (2)

A lower bound on the distance δ (see Equation (1)) is therefore given by:

δmin(g1, g2) = 1− |mcsmax(g1, g2)|
max(|g1|, |g2|) (3)

Using this relation, one can make an approximation on the similarity of two
graphs based on the feature f(a, g) introduced before. Assume we need to deter-
mine whether or not the distance δ(g1, g2) between a pair of given graphs g1, g2
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is larger than a specified threshold distance δt. If that is the case, the relation
δ(g1, g2) > δt will hold where δt is defined as

δt = 1− c

max(|g1|, |g2|) .

Obviously, the threshold distance δt can also be specified in terms of
a required minimum size of the mcs. This size is given by variable c.
Applying Equations (2) and (3), the following relation can be derived:
δmin(g1, g2) > δt ⇒ δ(g1, g2) > δt. This simply means that if the ap-
proximate distance δmin(g1, g2) between the graphs g1, g2 is larger than the
threshold distance δt, then the real distance δ(g1, g2) will also certainly be
larger than the threshold distance. In that case, it is obsolete to calculate
the computationally expensive exact mcs-distance δ(g1, g2). Moreover, by
substituting and simplifying the above relation we obtain:

c > |mcsmax(g1, g2)|. (4)

This means that if the number of nodes of the upper bound estimate
mcsmax(g1, g2) is smaller than the threshold number of nodes c, then the two
graphs g1, g2 will have a distance value larger than the specified threshold dis-
tance δt. As a consequence, by calculating the estimation of the upper bound of
the mcs’ size it is possible to decide if the distance between two graphs is larger
than a given threshold distance. (Note that Equation (4) is a necessary as well
as a sufficient condition to determine whether the distance between two given
graphs is larger than a given threshold. However, it is not a sufficient condition
to determine if the distance between the two graphs is smaller.) Obviously, the
threshold distance can either be specified via the distance δt itself or indirectly
by specifying the number of nodes c required as a minimum size of the mcs.
From this observation we can conclude that a quick estimate based on feature
vector comparison between two graphs can be made on the distance without the
actual computationally expensive calculation of the mcs.

3 Decision Trees

In this section, we will show how the concept of feature-vector comparison for
maximum common subgraph estimation can be used in combination with de-
cision trees. The idea is that, in a preprocessing step, the feature vectors are
extracted from the graph database. Then, a decision tree is built to classify
graphs according to their feature vectors. At runtime, all the features needed
are extracted from the sample graph and then the decision tree is traversed to
retrieve suitable graph candidates from the database. The decision tree approach
optimizes the number of features tested in order to eliminate the maximum num-
ber of non-candidates from the database.

The decision tree induction procedure itself is analogous to standard decision
tree methods (see [16], for example) with the difference that, whereas ordinary
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decision tree methods try to generalize from a training set of objects, the ap-
proach presented here tries to ’overfit’ the data in the sense that all leaf nodes in
the tree represent just a single graph, in the ideal case. In general, the smaller the
number of graphs in a leaf node is, the smaller is the number of full-fledged graph
matchings that need to be computed. Decision tree traversal however needs to
be modified such that several branches are followed concurrently while keeping
track of the assignable as well as the non-assignable feature values. A detailed
explanation will be given below.

In Section 3.1 a brief explanation will be given on how to induce decision
trees useful for error-tolerant graph matching. A detailed description on how the
tree structure can be used for error-tolerant filtering follows in Section 3.2.

3.1 Error-Tolerant Decision Tree Induction

The tree induction procedure is straightforward. First, all graphs in the database
are represented as feature vectors. Then, the decision tree induction algorithm,
which is derived from [16], classifies the graphs in the database based on their
feature values. As an initializing step, the tree’s root node is constructed and it
is assigned the entire graph set of the database. Then, each available feature is
tested and its suitability is evaluated according to a given split criterion (see
[8, 16]). Amongst all features, the best one is chosen and the current root’s
graph set is split into subsets according to the best feature. For each feature
value, a child node is created and the node is assigned the subset of graphs
that correspond to that feature value. The induction procedure is recursively
continued with the child nodes until one of the following termination conditions
holds: a) the graph set in a node contains only one graph; b) no features are left
to divide a subset; c) the features left cannot distinguish the remaining graphs
in the set. In the experimental section, we will refer to this type of tree structure
as the simple tree structure (see Section 4).

During traversal, an input sample may contain additional information not
available in the graph database. Hence, features not capable of distinguishing
database graphs may be useful filtering unknown sample graphs. To account
for this case, an extended tree structure is introduced. After the induction of
the simple tree structure as describe above, the remaining features are induced
even though they do not contain any split information for the database graphs.
This guarantees that these features are tested during traversal and the maximum
information given in database and sample graph is evaluated. This tree structure
will be referred to as the extensive tree structure (see Section 4).

3.2 Decision Tree Traversal

Decision trees induced as described above can be used to retrieve possible graph
candidates differing no more than a specified threshold distance δt from the
input sample graph. Assume all graphs in the database are equal in size. (If they
are not, this can easily achieved by an initial feature test in the decision tree.)
Furthermore, assume the size c of the requested mcs as described in Section 2 is
known and all features of the specified type have been extracted from the input
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Fig. 2. Illustration of a traversal step and corresponding counter udpates

graph. The general idea is to keep track of the number of nodes assigned to a
possible mcs belonging to the traversed tree branch. In order to do this, three
counters are needed:

– nmcs: The number of nodes assigned to a possible mcs in the current branch.
This counter is initialized with zero (i.e. at the beginning of tree traversal,
no nodes are assigned to the mcs).

– ndr: The number of nodes remaining in the database graphs of the current
branch. This counter is initialized with the size of the graphs in the database
(i.e. all nodes remain to be assigned to a possible mcs).

– nsr: The number of nodes remaining in the sample graph in the current
branch. This counters is initialized with the size of the sample graph, anal-
ogously to ndr.

The traversal algorithm follows all possible tree branches concurrently. During
the traversal of a branch, feature values are compared between database and
input sample. Suppose the feature tested at a specific branch is denoted by
f(a, g), the input sample is denoted by gs and similarly, the branch’s graph
set by Gdb. The counters are updated in the following way: nmcs = nmcs +
min(f(a, gs), f(a, Gdb)), ndr = ndr − f(a, Gdb) and nsr = nsr − f(a, gs).

Figure 2 illustrates a traversal step and the corresponding counter assign-
ments. The feature tested on the illustrated branch is the number of nodes
assigned a label ’A’. The sample contains two such nodes whereas the database
graphs contain three nodes. It is clear to see that two nodes may be assigned to a
possible mcs, hence, nmcs can be incremented by two. Also, three nodes have been
evaluated for the database graphs and can be removed from the nodes remaining
to be assigned and similarly two nodes can be removed from the remaining nodes
of the sample graph. This procedure is recursively continued until one of the fol-
lowing terminating conditions is met: 1) failure: (nmcs+ndr < c)∨(nmcs+nsr < c)
(i.e. not enough nodes can be assigned to a possible mcs); 2) success: nmcs ≥ c
(i.e. enough nodes have been assigned); 3) success: a leaf node has been reached
(no other terminating condition occurred). All nodes reached with a successful
termination condition are assigned to the overall result set. The graphs contained
in these nodes are possible candidates and as a consequence need to be tested
with a standard graph distance measure.
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4 Experimental Results

To demonstrate the efficiency and feasibility of the approach, we tested it on
several different types of graphs (see [17]). The experiments were conducted on
two sets of databases. The first set was a collection of small databases (100 graphs
per database) of random graphs of varying graph size and label alphabet. These
datasets were used to determine the general behavior of the method. The second
set was a collection of graph databases of two graph types, namely random
graphs and mesh/hyper-cuboid graphs. The random graph database consisted
of connected graphs of varying size whereas the mesh database consisted of
hyper-cuboids of varying dimension n (n = 2, 3, 4, 5). For both graph types
different node/edge label alphabet sizes were used. Overall, for each of the above
parameter settings a database of 1,000 graphs was created in the second set of
experiments. During creation of the database, it was made sure that each graph
is isomorphic only to itself.

The primary objective of the proposed filtering method is to reduce the num-
ber of candidates which have to undergo a full-fledged graph-distance calculation.
Hence, the quality of the approach can be expressed by measuring the number
of graphs returned by the traversal method. (We will also refer to this number as
the cluster size of the decision tree.) The cluster size determines the number of
full-fledged distance calculations that need to be executed. The other important
measure is the average number of nodes visited during traversal (which is equiv-
alent to the number of tests made during traversal). This value directly affects
traversal and therefore filter time.

In order to measure the average cluster size, graphs were randomly picked
from the database and were then used as an input sample for the decision tree
filter. This procedure was repeated for various allowed distances, ranging from
0.0 to 0.2, which is enough to determine the general behavior of the proposed
method. In order to get an average value for the cluster size, the procedure was
repeated 100 times for each database and distance setting. First, we will discuss
the results obtained on the smaller databases before considering the larger ones.

Figure 3 shows the cluster size for random graphs (20 nodes in size) obtained
with the simple as well as the extensive tree structure. (The results for the
other graphs sizes are similar to the values illustrated here and are therefore not
depicted.) For both approaches it can be seen that, as expected, the cluster size
increases with an increasing threshold distance. For a maximum allowed distance
of 0.0, the approach constantly returns just one graph from the database. (Since
in each database every graph is only isomorphic to itself, this suggests that the
method is very well suited for graph isomorphism filtering.) For the simple tree
structure, it can be seen that cluster size increases with the number of labels
in the label alphabet. This is also expected. With a larger label-alphabet and
the labels being uniformly distributed over the graphs in the database, there
are overall fewer nodes with equal labels between the graphs. Since the trees
induced have a low tree depth, only a limited number of features can be tested
in a branch. As a consequence, although nmcs is low, there are enough nodes
remaining in the database as well as in the sample to reach a leaf node. (This
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Fig. 4. Average number of visited nodes for simple and extensive tree

means that none of the explicit failure- or success-conditions (conditions 1 and
2) are met during tree traversal. Success is merely achieved by fulfilling condition
3, reaching a leaf node before anything else happens.) Therefore, the graphs in
the leaf reached are valid candidates and added to the result set.

To minimize cluster size, the tree structure implementing extensive feature
testing has been introduced. The cluster sizes for this traversal type are illus-
trated on the right of Figure 3. The nodes not accounted for during regular tree
traversal are now being consulted and serve to further decrease the cluster size.
It is clear to see that with an increasing label-size the graphs contain more in-
formation and therefore are much better distinguishable. It can be seen that for
a threshold δt = 0.1, the cluster size becomes 1 once the label-alphabet is of size
10. This means that finally only a single graph distance needs to be computed.
Similarly for δt = 0.2 and a label-alphabet of size 10, on average only 4.7 graph-
distance computations need to be performed. If the size of the label alphabet is
further increased, even less distance evaluations need to be done.

In addition to cluster size, the number of tests made during traversal influ-
ences the filtering performance. Since in our approach each test is assigned a
node in the tree, this number is reflected in the number of nodes visited during
traversal. An illustration for the same databases considered before is given in
Figure 4. On the left of Figure 4 the simple approach is illustrated. It can be
seen that with an increasing alphabet size the number of features tested (slowly)
increases. This can be explained by the fact that with more non-overlapping
labels (see above), more features are needed to split the graph set. Hence, the
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depth of the tree increases which results in more features being tested during
traversal. The right side illustrates the number of tests made during extensive
traversal. Clearly, more tests need to be made when the extensive tree structure
is adopted. However, considering the significant reduction in cluster size, this
additional effort gets easily compensated.

In the second set of experiments we have verified the results found in the first
set on a larger variety of graph types and larger databases. Figure 5 shows the
results concerning cluster size on mesh graphs. It is clear to see that the extensive
tree structure significantly outperforms the simple approach. The simple tree
structure does not induce enough features to stop traversal within the decision
tree, hence its cluster size is larger than the cluster sizes obtained by the extensive
tree structure. The extensive method behaves especially well if the size of the
label alphabet is increased and thus the graphs contain more information. The
results for the random graph database are similar. Due to increased diversity
in the individual graphs in the random graphs database, tree depth is generally
lower which results in a larger cluster size when the simple tree structure is
traversed. The extensive tree structure on the other hand benefits from the
increased diversity which means that the cluster sizes returned are similar to the
cluster sizes for mesh graphs.

In Figure 6 it can be seen that the performance gain of the extensive method
in cluster size comes at the price of an increased number of features tested during
traversal. The additional number of features tested during extensive tree struc-
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ture traversal seems quite significant at first sight. However, considering the high
computational cost of graph distance computation, there is still a considerable
performance gain by further ruling out database graphs, as shown in the right
part of Figure 5.

5 Conclusions

In this paper an approach to graph database filtering using machine learning
techniques has been presented. The approach addresses the problem of eliminat-
ing all graphs gdb from a database whose distance δ(gs, gdb) to an input graph gs

is larger than a specified threshold distance δt. The method is based on a decision
tree data structure. It reduces the number of candidate graphs in a database
to be tested by a graph distance measure. Based on simple graph features, a
decision tree is built that classifies the graphs. At runtime, possible matching
candidates are retrieved from the database by traversing the decision tree.

Considering the complexity of the proposed method we notice that the
method is divided into two stages: a) tree induction and b) tree traversal. Tree in-
duction is considered to be an off-line step, hence its complexity is not of primary
interest. Tree traversal, however, is the main objective concerning complexity. It
is only dependent upon the number of nodes visited during tree traversal. The
overall complexity of filtering-based database retrieval is determined by the de-
cision tree traversal complexity, the number of final matchings to be performed
(this number is identical to the cluster size) and the complexity of computing
the final matchings, which is depending upon graph type and graph distance
algorithm. In this paper, a number of experiments investigating cluster size and
number of visited nodes have been conducted. The results indicate that the clus-
ter size can be significantly reduced by few tests, resulting in a small number of
nodes to be visited as well as a small number of final matchings to be performed.

The main contribution of the present paper is an extension of the methods
proposed in [8, 9] from graph and subgraph isomorphism to the problem of error-
tolerant graph retrieval. Future work is planned on extending the approach to
a wider variety of features, further study of the tradeoff between number of
features tested and cluster size as well as determining the method’s efficiency on
real world data.
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Abstract. Novel algorithms for the analysis of graph sequences are pro-
posed in this paper. In particular, we study the problem of recovering
missing information and predicting the occurrence of nodes and edges
in time series of graphs. Our work is motivated by applications in com-
puter network analysis. However, the proposed recovery and prediction
schemes are generic and can be applied in other domains as well.

1 Introduction

The aim of graph matching is to find an assignment of the nodes and edges of two
given graphs such that some optimality criterion is satisfied. Special instances
of the graph matching problem allow us to compute, among other quantities,
distance measures between two given graphs. A large body of work on graph
matching, dealing with both theory and applications, has been published in
the literature. For representative collections of recent work see [1, 2, 3, 4]. How-
ever, almost all papers address the case of only two graphs being matched with
each other. In this paper, we provide an extension and address the analysis of
graph sequences.

The work described in this paper is motivated by applications in computer
network monitoring. The basic idea is to represent a computer network by a
graph, where the clients and servers are modelled by nodes and the physical
connections correspond to edges. If the state of the network is captured at regular
points in time and represented as a graph, a time series of graphs is obtained that
formally represents the network. In our previous work we have developed various
procedures for the detection of anomalous events and network behaviour [5].
These procedures are based on the observation that abnormal network behaviour
corresponds to large distance between two consecutive graphs in a time series. In
the current paper we address a different problem, viz. the recovery of incomplete
network knowledge. Due to various reasons it may happen that the state of
a network node or a network link can’t be properly captured during network
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monitoring. This means that it is not known whether a certain node or edge
is present in the graph sequence at a certain point in time. In this paper we
describe procedures that are able to recover missing information of this kind.
These procedures are capable of making a decision as to the presence or absence
of such network nodes and edges. Information recovery procedures of this kind
can also be used to predict, at time t, whether a certain computer or a certain link
will be present, i.e. active, in the network at the next point in time, t + 1. Such
procedures are useful in computer network monitoring in situations where one or
more network probes have failed. Here the presence, or absence, of certain nodes
and edges is not known. In these instances, the network management system
would be unable to compute an accurate measurement of network change. The
techniques described in this paper can be used to determine the likely status of
this missing data and hence reduce false alarms of abnormal change.

Analysis of time series and prediction is a field that has been intensively
studied in the literature [6, 7, 8, 9]. The novel contribution of the current paper
is the introduction of a prediction scheme that operates on sequences of graphs
rather than symbols, numbers, or vectors.

The paper is organized as follows. Basic terminology and notation will be
introduced in the next section. Then, in Sections 3 and 4, we will describe two
novel information recovery and prediction procedures. Results of a number of
experiments with these new schemes will be presented in Section 5. Finally,
conclusions will be drawn in Section 6.

2 Basic Concepts and Notation

A labeled graph is a 4-tuple, g = (V, E, α, β), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, α : V → L is the node labeling function, and
β : E → L

′
is the edge labeling function, with L and L

′
being the set of node and

edge labels, respectively. In this paper we focus our attention on a special class of
graphs that are characterized by unique node labels. That is, for any two nodes,
x, y ∈ V , if x �= y then α (x) �= α (y). Properties of this class of graphs have
been studied in [10, 11]. In particular it has been shown that problems such as
graph isomorphism, subgraph isomorphism, maximum common subgraph, and
graph edit distance computation can be solved in time that is only quadratic in
the number of nodes of the larger of the two graphs involved.

To represent graphs with unique node labels in a convenient way, we drop set
V and define each node in terms of its unique label. Hence a graph with unique
node labels can be represented by a 3-tuple, g = (L, E, β) where L is the set of
node labels occurring in g, E ⊆ L× L is the set of edges, and β : E → L

′
is the

edge labeling function [10, 11]. The terms “node label” and “node” will be used
synonymously in the remainder of this paper.

In this paper we will consider time series of graphs, i.e. graph sequences, s =
g1, g2, . . . , gN . The notation gi = (Li, Ei, βi) will be used to represent individual
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graph gi in sequence s; i = 1, . . . , N . Motivated by the computer network analysis
application considered in this paper, we assume the existence of a universal set
of node labels, or nodes, L, from which all node labels that occur in a sequence
s are drawn. That is, Li ⊆ L for i = 1, . . . , N and L =

⋃N
i=1 Li.1

Given a time series of graphs, s = g1, g2, . . . , gN , and its corresponding uni-
versal set of node labels, L, we can represent each graph, gi = (Li, Ei, βi), in
this series as a 3-tuple (γi, δi, β̂i) where

– γi : L → {0, 1} is a mapping that indicates whether node l is present in gi

or not. If l is present in gi, then γi (l) = 1; otherwise γi (l) = 0.2

– δi : L′ × L′ → {0, 1} is a mapping that indicates whether edge (l1, l2) is
present in gi or not; here we choose L′

= {l | γi (l) = 1}, i.e. L′
is the set of

nodes that are actually present in gi.
– β̂i : L′ × L′ → L

′
is a mapping that is defined as follows:

β̂i (e) =
{

βi (e) , if e ∈ {(l1, l2) | δi (l1, l2) = 1}
undefined, otherwise

The definition of β̂i (e) means that each edge e that is present in gi will have
label βi (e). The 3-tuple (γi, δi, β̂i) that is constructed from gi = (Li, Ei, βi) will
be called the characteristic representation of gi, and denoted by χ (gi). Clearly,
for any given graph sequence s = g1, g2, . . . , gN the corresponding sequence
χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) can be easily constructed and is uniquely de-
fined. Conversely, given χ (s) = χ (g1) , χ (g2) , . . . , χ (gN ) we can uniquely recon-
struct s = g1, g2, . . . , gN .

In the current paper we’ll pay particular attention to graph sequences with
missing information. There are two possible cases of interest. First it may not
be known whether node l is present in graph gi or not. In other words, in
χ (gi) it is not known whether γi (l) = 1 or γi (l) = 0. Secondly, it may not
be known whether edge (l1, l2) is present in gi, which is equivalent to not
knowing, in χ (gi), whether δi (l1, l2) = 1 or δi (l1, l2) = 0. To cope with the
problem of missing information and in order to make our notation more con-
venient, we extend functions γ and δ in the characteristic representation, χ (g),
of graph g = (L, E, β) by including the special symbol ? in the range of val-
ues of each function to indicate the case of missing information. That is, we
write γ (l) =? if it is unknown whether node l is present in g or not. Simi-
larly, the notation δ (l1, l2) =? will be used to indicate that it is not known
whether edge (l1, l2) is present in g or not. As any existing edge, (l1, l2) ∈ E,
requires the existence of both incident nodes, l1, l2 ∈ L, we always assume
γ (l1) = γ (l2) = 1 if δ (l1, l2) = 1 to ensure the consistency of our graph
representation.

1 In the computer network analysis application L will be, for example, the set of
all unique IP host addresses in the network. Note that in one particular graph,
gi, usually only a subset is actually present. In general, L may be any finite or
infinite set.

2 One can easily verify that {l | γi (l) = 1} = Li.
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3 Recovery of Missing Information Using a Voting
Procedure

Consider graph sequence s = g1, g2, . . . , gt and let L denote the underlying uni-
versal set of node labels. Furthermore, consider graph gt = (Lt, Et, βt) with
characteristic representation χ (gt) = (γt, δt, β̂t) and assume that γt (l) =? for
some l ∈ L. The task to be solved is to make a decision as to γt(l) = 1
or γt(l) = 0. From the formal point of view this problem is cast as a clas-
sification problem in this paper. That is, given γt(l) =? we want to assign
l to one of two classes, Ω0 or Ω1. Class Ω1 is equivalent to saying that l is
present in gt, i.e. γt(l) = 1, while class Ω0 means that l is not included in gt,
i.e. γt(l) = 0.

To classify l as either belonging to class Ω0 or Ω1, we consider a subse-
quence, or time window, s′ = gt−M , . . . , gt−1 of length M . The basic idea is
to utilize information about node l in the graphs belonging to subsequence s′,
in order to decide about the presence or absence of l in graph gt. A simple
approach consists in computing the relative frequency of occurrence of node l
in subsequence s′ and using this value for the decision to be made. Let k1 be
the number of graphs in subsequence s′ in which node l is actually present,
i.e. γ (l) = 1. Similarly, assume that k0 is the number of graphs in subse-
quence s′ for which γ (l) = 0. Obviously, there are 0 ≤ M − (k0 + k1) ≤ M
graphs in subsequence s′ where γ (l) =?. Given parameters k0 and k1, we can
use the following simple rule to make a decision as to the presence of node l
in gt:

γt (l) =
{

0 if k0 > k1
1 if k1 > k0

(3.1)

In case k0 = k1, a random decision is in order. A potential problem with the
decision rule according to (3.1) occurs if k0 + k1 = 0, i.e. if in each graph, g,
of subsequence s′, we have γt (l) =?. In this case one has to resort to making a
random decision, or possibly enlarge the length of subsequence s′, i.e. increase the
value of parameter M . The second possibility is motivated by the expectation
to find graphs in subsequence g1, . . . , gt−M−1 in which γ (l) = 1 or γ (l) = 0,
resulting in a value k0 > 0 and/or k1 > 0.

Similar decision procedures can be derived for edges e in graph gt. That is,
given edge e with δ (e) =?, we count the number of graphs, g, in subsequence s′

with δ (e) = 0 and the number of graphs, g, with δ (e) = 1 and decide, based on
these two numbers, whether δt (e) = 0 or δt (e) = 1.

In case information about more than one node, l, or one edge, e, is missing in
graph gt, we can apply the procedures described above to all affected nodes and
edges of gt in parallel. In the extreme case, these procedures can even be applied
when information about the complete graph, gt, is missing, i.e. when γt (l) =?
for all nodes, l, of gt and δt (e) =? for all edges, e, of gt.
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4 Recovery of Missing Information Using Reference
Patterns

The method described in Section 3 is based on a simple voting scheme that
computes the number of graphs in subsequence s′ where γ (l) = 0 and compares
this number with the number of graphs where γ (l) = 1. The particular order of
the values γ (l) = 0 and γ (l) = 1 in subsequence s′ is not relevant. In Section 4
we develop a more refined decision rule where this order is taken into account. We
assume the existence of a reference set, R, of graph subsequences of length M ,
i.e. R = {s1, . . . , sn} where sj = gj,1, . . . , gj,M for j = 1, . . . , n. Each element,
sj , of the reference set is a sequence of graphs of length M . These sequences are
used to represent information about the “typical behaviour” of the nodes and
edges in a graph sequence of length M . This information will be used to make a
decision as to γt (l) = 0 or γt (l) = 1 whenever γt (l) =? occurs.

To generate reference set R, we can utilize graph sequence g1, . . . , gt−1. Each
sequence in R is of length M , by definition. Let’s assume that M ≤ t− 1. Then
we can extract all subsequences of length M from sequence g1, . . . , gt−1, and
include them in reference set R. This results in

R = {s1 = g1, . . . , gM ; s2 = g2, . . . , gM+1 ; st−M = gt−M , . . . , gt−1}
From each sequence, si = gi, . . . , gi+M−1, in set R we can furthermore extract,
for each node l ∈ L, the sequence γi (l) , . . . , γi+M−1 (l). Assume for the mo-
ment that γi (l) , . . . , γi+M−1 (l) ∈ {0, 1}, which means that none of the elements
γi (l) , . . . , γi+M−1 (l) is equal to ?. Then (γi (l) , . . . , γi+M−1 (l)) is a sequence
of binary numbers, 0 or 1, that indicate whether or not node l occurs in a par-
ticular graph in sequence si. Such a sequence of binary numbers will be called
a reference pattern. Obviously (γi (l) , . . . , γi+M−1 (l)) ∈ {0, 1}M . Because there
are 2M different binary sequences of length M , there exist at most 2M different
reference patterns for each node l ∈ L. Note that a particular reference pattern,
x = (x1, . . . , xM ) ∈ {0, 1}M , may have multiple occurrences in set R.

In order to make a decision as to γt (l) = 0 or γt (l) = 1, given γt (l) =?,
the following procedure can be adopted. First, we extract from graph sequence
s = g1, . . . , gt the sequence (γt−M+1 (l) , . . . , γt (l)) where, according to our as-
sumption, γt (l) =?. Assume furthermore that γt−M+1 (l) , . . . , γt (l) ∈ {0, 1},
i.e. none of the elements in sequence (γt−M+1 (l) , . . . , γt (l)), except γt (l), is
equal to ?. Sequence (γt−M+1 (l) , . . . , γt (l)) will be called the query pattern.
Given the query pattern, we retrieve from the reference set, R, all reference pat-
terns x = (x1, . . . , xM ) where x1 = γt−M+1 (l) , x2 = γt−M+2 (l) , . . . , xM−1 =
γt−1 (l). Any reference pattern, x, with this property is called a matching ref-
erence pattern. Clearly, a reference pattern that matches the query pattern is a
sequence of 0’s and 1’s of length M , where the first M − 1 elements are iden-
tical to corresponding elements in the query pattern. The last element in the
query pattern is equal to ?, by definition, while the last element in any matching
reference pattern is either 0 or 1. Let k be the number of reference patterns
that match the query pattern. Furthermore, let k0 be the number of matching
reference patterns with xM = 0, and k1 be the number of matching reference
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patterns with xM = 1; note that k = k0 + k1. Now we can apply decision rule
(3.1) again. Intuitively, under this decision rule we consider the history of node
l over a time window of length M and retrieve all cases recorded in set R that
match the current history. Then a decision is made as to γt (l) = 0 or γt (l) = 1,
depending on which case occurs more frequently in the reference set.

The method described above is based on the assumption that none of the
reference patterns for node l, extracted from set R, contains the symbol ?. For a
generalization where this restriction is no longer imposed, neither in the reference
nor in the query patterns, see [12].

5 Experimental Results

The methods described in Sections 3 and 4 of this paper have been implemented
and experimentally evaluated on graph sequences derived from real computer
networks. For the experiments four time series of graphs, S1, S2, S3 and S4,
acquired from two computer networks have been used. Some quantitative fea-
tures of these graph sequences are shown in Table 1, where the size of a graph
is defined as the number of its nodes. All four series represent logical communi-
cations on the network. Series S1, S2 and S4 were derived from data collected
from a large enterprise data network, while S3 was collected from a wireless
LAN used by delegates during the World Congress for Information Technology
(WCIT2002). The nodes in each graph of S1 and S2 represent business domains
in the network, while in S3 and S4 they represent individual IP addresses.

Note that all graph sequences are complete, i.e. there are no missing nodes
and edges in these sequences.

To test the ability of the methods described in Sections 3 and 4 it was as-
sumed, for a particular graph in a time series, that γ(l) is unknown for each
node. Then the two prediction scheme were applied and the percentage of cor-
rectly predicted nodes in the considered graph was determined. This procedure
was repeated for each graph in the time series. Note that both methods work
with a time window of length M . Hence prediction starts only at the (M + 1)-
th graph in a sequence. In Fig. 1 the percentage of correctly predicted nodes
for each graph of sequence S1 is shown. Because of space limitations, only the
results obtained for sequence S1 are depicted in this paper. But the results for
the other three sequences are very similar. All experiments were also executed
for predicting the edges, rather than the nodes, in the graphs. Again the results
were similar to Fig. 1.

Table 1. Characterisation of the graph sequences used in the experiments

S1 S2 S3 S4

Number of graphs in sequence 102 292 202 99
Size of smallest graph in sequence 38 85 15 572
Size of largest graph in sequence 94 154 329 10704

Average size of graphs in sequence 69.7 118.5 103.9 5657.8
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Fig. 1. Percentage of correctly predicted nodes in sequence S1, using M = 5

In Fig. 1 we observe that prediction accuracy for either prediction scheme is
over 90% on the average. This is a remarkably high value taking into considera-
tion that for a two-class classification problem, such as the one considered here,
random guessing would give us an expected performance of only 50%. There are
some obvious drops in prediction performance in Fig. 1, for example at time 22
and at time 65. These drops correspond to abnormal events in the underlying
computer network where major changes in network topology take place. In gen-
eral the topology of the network is changing rather slowly with time. This means
that the likelihood of a node or an edge, which is present at time t, being also
present at time t+1 is quite high. However, abnormal events manifest themselves
by sudden change in network topology, i.e. the appearance of many new and/or
the disappearance of many existing nodes and edges, which causes the proposed
prediction scheme with a higher likelihood to fail. Nevertheless, we note that
even at those drop points performance is quite high.

The length, M , of the time window for voting (Section 3) and the reference
patterns (Section 4) is a parameter to be selected by the user. In Fig. 1, the value
M = 5 was used. To study the influence of this parameter on the prediction
accuracy, other values of M were experimentally investigated. Fig. 2 shows,
for graph sequence S1, the average node prediction accuracy for values M =
1, . . . , 11. This figure was produced by averaging, for each considered value of
M , the prediction accuracy at each individual node, as shown in Fig. 1, over
the whole time series of graphs. We notice that the performance of the voting
procedure is more or less independent of M , although a slight local maximum can
be observed for M = 5. The behaviour of the reference pattern scheme is almost
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Fig. 2. Percentage of correctly predicted nodes, averaged over whole sequence depen-
dent on parameter M

identical to the voting procedure for M = 1, . . . , 7, but for M = 9 and M =
11 performance somewhat deteriorates. Also shown in Fig. 2 is the prediction
accuracy averaged over all four graph sequences, S1 to S4 (total). Except for
M = 11, the reference pattern scheme has a slightly higher performance than
the voting method.

6 Conclusions

The problem of incomplete knowledge recovery and prediction of the behaviour
of nodes and edges in time series of graphs was studied in this paper. Formally,
this task was formulated as a classification problem where nodes and edges with
an unknown status are to be assigned to one of the classes ’present in’ or ’absent
from’ the actual graph. Two procedures for such a classification were proposed.
Both use knowledge of the behaviour of a node or an edge in previous graphs
of the time series under consideration. The motivation of this work stems from
the field of computer network monitoring. However the proposed framework for
graph sequence analysis is fairly general and can be applied in other domains
as well. In computer network monitoring, prediction procedures, as studied in
this paper, are important for patching missing network data in instances where
one or more network probes have failed. Without such procedures, the network
management system would have diminished capability in detecting abnormal
change.
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The proposed prediction procedures are conceptually simple and straightfor-
ward to implement. Nevertheless they have an excellent performance and achieve
correct prediction rates for the nodes and edges of real networks ranging between
about 90% and 97%.

The proposed schemes can be extended in a variety of ways. There are several
other algorithmic paradigms that seem to be feasible for the considered prob-
lem, for example, linear prediction [13]. In a parallel study, the application of
decision tree classifiers for predicting the occurrence of nodes and edges is in-
vestigated [14]. From the general point of view, the two procedures proposed in
the current paper utilize context in time, i.e. knowledge of the past behaviour
of a node or an edge is used to predict its future behaviour. As an alternative,
one could use within-graph context rather than context in time. Under such a
scheme one would base the decision as to the presence or absence of a node or
an edge in the network at a particular time on the presence or absence of other
nodes or edges at the same time, i.e. in the same graph. Finally, the combina-
tion of both schemes, using context in time together with within-graph context
seems feasible.

Acknowledgement

The authors are thankful to F. Thalmann, Ch. Irniger and T. Varga for various
contributions to this paper.

References

1. IEEE Trans. PAMI. Special Section on Graph Algorithms and Computer Vision,
Volume 23, 2001.

2. Pattern Recognition Letters. Special Issue on Graph Based Representation, Volume
24, Elsevier Science B.V., 2003.

3. Int. Journal of Pattern Recognition and Artificial Intelligence. Special Issue on
Advances in Graph Matching, Volume 18, No. 3, 2004

4. Hancock, E., Vento, M. (eds.): Graph Based Representations in Pattern Recogni-
tion, Proc. 4th Int. Workshop GBR2003, Springer, LNCS 2726, 13-23

5. Bunke, H., Kraetzl, M., Shoubridge, P., Wallis, W.: Detection of abnormal change
in time series of graphs, Journal of Interconnection Networks, Vol. 3, Nos 1,2, 2002,
85-101

6. Weiss, S.M., Indarkhya: Predictive Data Mining: A Practical Guide. Morgan Kauf-
mann, 1998

7. Fung, G.P.C.F., Yu, d.X., Lam, W.: News sensitive stock trend prediction, in Chen,
M.-S., Yu, P.S., Liu, B. (eds.): Advances in Knowledge Discovery and Data Mining,
Proc. 6th Pacific-Asia Conference, PAKDD, Springer, LNAI 2336, 2002, 481-493

8. Schmidt, R., Gierl, L.: Temporal abstractions and case-based reasoning for medical
course data: two prognostic applications, in Perner, P. (ed.): Machine Learning in
Pattern Recognition Proc. 2nd Int. Workshop, Springer, LNAI 2123, 2001, 23-34

9. Kahveci, T., Singh, K.: Optimizing similarity search for arbitrary length time series
queries, IEEE Trans. KDE, Vol 16, No 2, 418-433



Recovery of Missing Information in Graph Sequences 321

10. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: On graphs with unique node
labels, in Hancock, E., Vento, M. (eds.): Graph Based Representations in Pattern
Recognition, Proc. 4th Int. Workshop GBR2003, Springer, LNCS 2726, 13-23

11. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels, accepted for publication in Pattern Analysis and Applications

12. Bunke, H., Dickinson, P., Kraetzl, M.: Analysis of Graph Sequences and Appli-
cations to Computer Network Monitoring, Technical Report, DSTO, Edinburgh,
Australia, 2003

13. Makhoul, J.: Linear prediction: a tutorial review, Proc. of the IEEE, 63(4), 1975,
561-580

14. Quinland, R.: C4.5: Programs for Machine Learning, Morgen Kaufmann Publ.,
1993



Tree-Based Tracking of Temporal Image

Tomoya Sakai, Atsushi Imiya, and Heitoh Zen

Institute of Media and Information Technology, Chiba University,
Yayoi-cho 1-33, Inage-ku, 263-8522, Chiba, Japan
{tsakai, imiya, zen.h}@faculty.chiba-u.jp

Abstract. This paper introduces a tree-based algorithm for the motion
tracking of dominant parts in a temporal image sequence. A tree allows
us to express hierarchical relations of segments in an image. We first
develop a fast tree matching algorithm which is suitable for matching
of images. Second, employing the linear-scale-space analysis, we develop
an algorithm to extract hierarchical relations of temporal images as a
tree. Combining tree matching and tree extraction provides a method to
extract moving dominant parts in a sequence of temporal images.

1 Introduction

In the previous paper [13], we introduced hierarchical analysis of temporal images
using linear scale space analysis. This paper is a squeal of the previous paper,
we show that using the same strategy, it is possible to achieve grouping of image
in a temporal sequence. We first show a fast approximate tree matching algo-
rithm [13], which is suitable for time sequence segmentation of temporal images.
Since a tree expresses a hierarchical relations in data [13, 14, 16, 15, 10, 11], tree-
based expression of segments in an image provides global-hierarchical features
for image analysis [13]. For the application of tree-based motion analysis, we are
required to develop both fast tree-matching algorithm [14] and tree construc-
tion algorithm. Second, we introduce a tree-sequence construction algorithm for
a temporal image sequence using linear scale-space analysis [8, 9, 2, 3, 13, 1, 12].
The linear-scale space analysis provides a tree-extraction algorithm from sig-
nals [6, 7] and images [2, 3]. We have extended the linear-scale-space-based tree
construction method to temporal images [13].

2 Tree Distance and Its Fast Computation

For quantitative analysis of topological changes of a temporal image with tem-
poral trees extracted in the linear scale space, we introduce the distance between
trees based on the editing of the tree structure. Since it is possible to transform
irregular trees to regular trees by adding special nodes (∗) to the trees, we as-
sume that our trees are regular. Furthermore, since our trees, extracted using
scale space analysis, are rooted trees, we develop a fast computation method for
rooted trees which is applicable in time-varying image sequence analysis [16].
Therefore, we assume that trees are m-regular, for m ≥ 2.

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 322–331, 2005.
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Setting α to be a k-digit number, each digit of which from 0 to k − 1, the
subtree of the node α is expressed as

nα(T ) = tα[Tα1, Tα2, · · · , Tαm], (1)

where tα is the label of node nα. For α = 0, equation (1) expresses the tree and
n0 is the label of the root. Therefore, the number of digits of α expresses the
depth of a subtree.

The operations applied to a tree are the transform of the node label, the
permutation of subtrees, the insertion of a subtree to ∗, and the elimination of
a subtree, which are mathematically expressed as

Et : tα[Tα1, · · · , Tαm] = xα[Tα1, · · · , Tαm], (2)

Ep : tα[Tα1, · · · , Tαi · · ·Tαj · · ·Tαm] = tα[Tα1, · · · , Tαj · · ·Tαi · · ·Tαm], (3)

Ei(S) : tα[Tα1 · · · ∗ · · ·Tαm] = tα[Tα1 · · ·S · · ·Tαm], (4)

Ei(Tαk) : tα[Tα1 · · ·Tαk · · ·Tαm] = tα[Tα1 · · · ∗ · · ·Tαm]. (5)

Furthermore, a successive application of En derives the transformation of a sub-
tree such as

Et(Tα,k, S) : tα[Tα1, · · · , Tαk · · · , Tαm] = xα[Tα1, · · · , S, · · · , Tαm]. (6)

We define the lengths of these operations as

d(sα) =
1

1 + lk
|sα|, (7)

where

lα =
{

0, if α = 0,
the number of digits of α, otherwise, (8)

and

|sα| =

⎧⎪⎪⎨⎪⎪⎩
1, if sα is the node-label transform,
|P |, if sα is the permutation,
|S|, if sα is the insertion,
|S|, if sα is the elimination,

(9)

where |P | is the number of permutations. Using these lengths, we define the
distance between trees as

D(T, T ′) =
n∑

α=1

d(sα), (10)

for the sequence of operations {s1, s2, · · · , sn} which transforms T to T ′. This
tree distance satisfies the following lemma.

Lemma 1. For trees of almost the same order, the distance in eq. (10) is metric,
that is, it satisfies the conditions of distance.
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3 Linear Scale Space Analysis for Temporal Images

3.1 Scale Space Analysis of Image Sequence

In the two-dimensional Euclidean space R2, for an orthogonal coordinate system
x-y defined in R2, a vector in R2 is expressed by x = (x, y), where · is the
transpose of a vector. For the temporal function f(x, t), the general function
f(x, τ, t) is the solution of the equation

∂

∂τ
f(x, τ, t) = Δf(x, τ, t), τ > 0, f(x, 0, t) = f(x, t). (11)

The spaces R2 × (0 ≤ τ < ∞) and R2 × (0 ≤ τ < ∞) × (−∞ < t < ∞) are
called the linear scale space and the temporal linear scale space, respectively.

The attention points for the topographical maps f(x, τ, t) in the temporal
scale space are defined as the solutions of the equation ∇f(x, τ, t) = 0. The
stationary curves in the scale space are collections of the attention points. We
denote the trajectories of the attention points by x(τ, t) for each t. Setting H to
be the Hessian matrix of f(x, τ, t), for fixed t, Zhao and Iijima [2] showed that
the stationary curves for a function are the solution of

H
dx(τ, t)

dτ
= −∇Δf(x(τ, t), τ, t), (12)

and clarified the topological properties of the stationary curves for two-dimensional
patterns.

This geometrical property guarantees that, as

x(t) = lim
τ→0

x(τ, t) (13)

the validity of the tracking of the stationary points of the spatio-temporal gra-
dient of the temporal function.

The attention points x∗(t), which satisfy ∇f(x, τ, t) = 0 expresses the topo-
logical structure of image f(x, τ, t). The signs of the eigenvalues of the Hessian
matrix H at attention point x∗ clarify the geometrical property of the attention
point.

Since the second directional derivation of f(x, τ) for point x is defined as

D2
x(,τ,t)(θ) =

d2

dn2 f(x, τ, t) == n · ∇(n · ∇f) = nHn. (14)

where n(θ) = ω − x for ω = (cos θ, sin θ), 0 ≤ θ ≤ 2π. D2
x(,τ,t)(θ) expresses

the geometrical property of the attention point. Equation (14) indicates that the
eigenvectors of the Hessian matrix of f(x, τ, t) give the extrema and saddles of
D2f(x, τ, t) and that the extrema and saddles are achieved by the eigenvectors of
the Hessian of f(x, τ, t), since α1 ≥ nHn ≥ α2 for |n| = 1, where α1 ≥ α2 are
two eigenvalues of the 2× 2 Hessian matrix H. Therefore, we have the relations
max(D2

x(τ,t)) = α1 and min(D2
x(τ,t)) = α2.
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In references [2, 3], Zhao and Iijima adopted singular points which satisfy the
relation d2

dn2 f(x, τ, t) > 0 or d2

dn2 f(x, τ, t) < 0, that is, points which satisfy the
relation α1 · α2 > 0. We denote the signs of the eigenvalues of the minus of
the Hessian matrix as (+, +), (+,−) and (−,−), which correspond to the local
maximum points, the saddle points, and the local minimum points, respectively.
In this paper, we deal with all three classes of extrema. The saddle points in
the scale space appear on walls and valleys which connect maximum points and
minimum points, respectively. Therefore, the motion of the saddle points in the
scale space corresponds to changes in the topology of gray-valued images in the
scale space.

3.2 Temporal Tree Construction

Since the stationary curves consist of many curves for τ > 0, we call each curve
a branch curve. The point x∞ for

lim
τ→∞ x(τ, t) = x∞(t) (15)

is uniquely determined for any image. We call a curve on which point x∞ lies and
a curve which is open to the direction of −τ , the trunk and branch, respectively.

Definition 1. For S(x, τ, t) = |dx(τ)
dτ |, the stationary points on the stationary-

curves are the points which satisfy S(x, τ, t) = 0 or are isolated points under the
conditions

dS(x, τ, t)
dτ

= 0,
d2S(x, τ, t)

d2τ
= 0. (16)

Zhao and Iijima introduced the following procedure for the construction of a
tree from an image [2, 3].

Rule 1

1. The sub-root of a branch is the singular point, such that ∇f = 0, at the top
of the branch curve and a sub-root.

2. The sub-root is connected to the trunk by a line segment parallel to the x-y
plane.

Definition 2. For the stationary points on the stationary curves which are
merged using Rule 1, the order of the stationary points is defined as

x(τ, t) # x(τ ′, t) if τ > τ ′ on a branch for a fixed t. (17)

The tree is constructed according to the order of the stationary points on
the stationary-curves. Denoting a stationary point on the stationary-curves as
(xi, τi, t), a point xi and the region of interest R(xiτi, t)

R(xi, τi, t) = {x(t)||x(t)− xi| ≤
√

2τi(t)} (18)

called the stable attention point and the attention field. Furthermore,

f(x, xi, τi, t) = exp(−|x− xi(t)|2
τi

)f(x, t) (19)
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is called a view-controlled image of the original image, since f(x, xi, τi, t) approx-
imates an image which is observed by a vision system with a same mechanisms
to those of of human beings [1] for the fixed t. Rule 2 is our rule based on the
radii of the attention fields.

Rule 2

1. On the trunk, if τ > τ ′, we define the order of the stationary points as
x(τ, t) # x(τ ′, t) for a fixed t.

2. On each branch xi(τ, t), we express the stationary point xi(τi(j), t). Assuming
that the maximum scale parameter on this branch is τi(0), we set xi(j)(t) =
(xij , yij , t) for point xi(τj , t) in the scale space.

3. We define the order of the stationary points on each branch employing geo-
metric properties of the attention fields.
(a) On each branch curve, for τi(m)(t) > τi(n)(t), if the relation

|xi(m)(t)− xi(n)(t)| ≤
√

2τi(m)(t)

is satisfied, then we define xi(m)(t) # xi(n)(t).
(b) For a pair of branch curves xi(τ, t) and xj(τ, t) and a pair of fixed scales

τi(m)(t) and τj(0)(t), if the relation

|xi(m)(t)− xj(0)(t)| ≤
√

2τi(m)(t)

is satisfied, then we define xi(m) # xj(0).

3.3 Transformation from Image to Tree

The property introduced in this section defines the transformation from a tem-
poral image f(x, t) to a temporal tree T (t), such that,

Θ(f(x, t)) = T (t),
∂

∂τ
f(x, τ, t) = Δf(x, τ, t). (20)

For the sampled sequence f(x, y, 1), f(x, y, 2), · · ·, f(x, y, t), f(x, y, t + 1), · · ·,
constructing the structure tree T (t) for each image in this sequence, the algo-
rithm yields a sequence of trees from a sequence of images. The transformation
from temporal images to trees is algorithmically achieved by the following pro-
cedure.

Procedure: Tree Extraction

1. Compute f(x, τ, t) from f(x, t) at each t.
2. Construct stationary curves applying Rule 1 to the solution of eq. (12).
3. Extract stationary points on the stationary curves using Definition 1.
4. Construct a tree for each t, using Rule 2.

For the generation of a temporal tree sequence, we adopt the following
Rule 3.
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Rule 3

1. If a pair of successive trees T (t) and T (t + 1) is topologically different we
affix new labels for nodes, excepting the root.

2. For topologically equivalent trees T (t) and T (t + 1), if the stationary points
of T (t+1) do not remain in the field of view of each node, we consider these
two trees to be different and T (t + 1) produces new nodes.

3. We eliminate old symbols of nodes in T (t) and affix new symbols to new
nodes in T (t + 1).

Using these operations, we can extract the motion of stationary points and
the trajectory of the attention fields on the image plane τ = 0. This process
detects the trajectory of the dominant motion of parts in a sequence of images.
Stationary points on the stationary-curves, which are of the centroids of the field
of views, are cues for the extraction of the dominant parts of temporal functions.
Therefore, by tracking the stationary curves, we can extract the trajectories of
the dominant parts of images.

3.4 Optical Flow in Scale Space

Optical flow extracts motion of each point of each image in scale space. In this
section, for motion analysis, we compare the deference between optical flow and
temporal tree-analysis.

For the total derivation of the general images,

d

dt
f(x, τ, t) = ∇fẋ +

∂

∂t
f(x, τ, t), (21)

where ẋ = dx
dt is the optical flow of the temporal function f(x, τ, t), and at the

point x [17, 18, 19, 20] we have the relation

d

dt
f(x, τ, t) = 0. (22)

Equations (11) and (22) imply the next property of the flow vectors in the
linear scale space.

Theorem 1. Let f(x, τ, t) be the spatio-temporal general image. We cannot de-
tect optical flow x at the points which satisfy the condition ∇f(x, τ, t), and we
have the relation ft(x, τ, t), that is, if f(x, τ, t) = 0,

(∇f(x, τ, t),
∂

∂t
f(x, τ, t)) = 0. (23)

Since, at the points which satisfy the relations ∇f = 0 and ft = 0, we cannot
detect the flow vector ẋ, This theorem implies that for the detection of the
topology trajectory in the linear scale space, we are required to develop a method
for the detection of the trajectory of the peaks ∇f(x, τ, t) = 0 in the spatio-
temporal domain, without using optical flow.
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4 Example

Figures 1, 2, and 3 show a sequence of beating heart images with field of atten-
tions, optical flow and trees extracted stationary-curves, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Sequence of beating heart. 1,6,7,8,11,12,13,31,32,33,38 frames from 1 to 38
frames. From 6 to 7, from 7 to 8, from 11 to 12, from 12 to 13, and from 31 to 32, there
is topological changes. From 1 to 6, from 8 to 11, from 13 to 31, and from 33 to 38,
there is no topological changes. These changes extracted using tree analysis. Circles
and points on images are field of attentions and the centre of the field of attentions,
respectively

From these three series of features extracted from an image sequence of a
beating heart, we can observe the following mathematical and geometrical prop-
erties related to the trajectory of the view-fields and optical flow fields.

Observations

– From 6 to 7, from 7 to 8, from 11 to 12, from 12 to 13, from 31 to 32, and
from 32 and 33, gray-values of images are topologically different.

– From 1 to 6, from 8 to 11, from 13 to 31, and from 33 to 38, gray-values of
images are topologically equivalent.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Sequence of stationary-curves of beating heart. Frames 1 and 2, frames 6 and
7, frames 7 and 8, frames 11 and 12, frames 31 and 32, and frames 37 and 38
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Fig. 3. Temporal trees of a sequence of images. (a) Tree of from 1 to 6. (b) Tree of 7.
(c) Tree of from 8 to 11. (d) Tree of 12. (e) Tree of from 13 to 31. (f) Tree of 32. (g)
Tree of from 33 to 38

– In from frames 6 to 8, while parts of the images move, the attention points
and the attention fields move.

– In frames 11 and 14, the topological changes of structure-curves reveal the
topographical changes in the gray values of images in the temporal sequence.

– From frames 13 to 32, when the gray values of parts of image change topo-
graphically.

These observations on the trajectory of the attention fields and optical flow
of images in a sequence lead to the conclusion that the temporal analysis of the
attention fields based on the stationary-curves in the linear scale space is suitable
for the extraction of the dominant motions of parts in an image sequence.
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The temporal tree analysis found that from frames 6 to 7, from frames 7
to 8, from frames 11 to 12, from frames 12 to 13, from frames 31 to 32, and
from frames 32 and 33, gray-values of images are topologically different, and
that from frames 1 to 6, from frames 8 to 11, from frames 13 to 31, and from
frames 33 to 38, the gray values of images are topologically equivalent. These
topological transitions extracted using the tree metric for trees shown in Figure
3, The distances among trees which are topologically different are

D(T (6), T (7)) = 1.5, D(T (7), T (8)) = 3,
D(T (11), T (12)) = 3, D(T (12), T (13)) = 1.5,
D(T (31), T (32)) = 1.5, D(T (32), T (33)) = 1.5.

These distances achieves the grouping of images in a sequence in to

Frames 0 to 6, Frame 7, Frames 8 to 11, Frame 12,
Frames 13 to 31 , Frame 32, Frames 33 to 38.

Images in a sequence of a beating heart are separated into groups on the basis
of the tree-editing distances of the stationary trees of images. This result shows
that the edit-distance-based method allows us to derive groups of images in a
temporal sequence.

5 Conclusions

As an application of the scale space analysis for time-varying images, we devel-
oped a method for the extraction of moving parts from a sequences of images.
The method does not assume the scale space transformation with respect to the
time variable. Computational examples show that our method is suitable for the
spatiotemporal analysis of sequences of low-contrast images such as ultrasonic
images.
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Abstract. In this paper we address the problem of comparing and
classifying protein surfaces through a kernelized version of the Softas-
sign graph-matching algorithm. Preliminary experiments with random-
generated graphs have suggested that weighting the quadratic cost func-
tion of Softassign with information coming from the computation of dif-
fusion kernels on graphs attenuate the performance decay with increasing
noise levels. Our experimental results show that this approach yields a
useful similarity measure to cluster proteins with similar structure, to
automatically find prototypical graphs representing families of proteins
and also to classify proteins in terms of their distance to these prototypes.
We also show that the role of kernel-based information is to smooth the
obtained matching fields, which in turn results in noise-free prototype
estimation.

1 Introduction

In recent years, there has been a growing interest in exploiting the 3D information
derived from themolecular surfaces of proteins in order to infer similarities between
them. This is due to the fact that, as molecular function occurs at the protein
surface, these similarities contribute to understand their function and, in addition,
they reveal interesting evolutionary links between them. Particularly, there are
two computational problems in which surface-based methods play a key role:
registration, that is, determining whether two proteins have a similar shape, and
thus, develop a similar function; and docking, that is, determining whether two
proteins have a complementary shape and thus they can be potentially bounded to
form a complex (for antigen-antibody reactions, enzyme catalysis, and so on). In
this regard, the two central elements needed to solve both problems are: a proper
surface description and an efficient and reliable matching algorithm [1]. Surfaces
are often described by the interest points associated to concave, convex or toroidal
patches of the so called Connolly surface [2], the part of the van der Waals surface
accessible/excluded to/by a probe with a typical radius of 1.4Å. Given such a
description, and assuming molecular rigidity, it is possible to find the optimal 3D
transformation satisfying the condition of shape coincidence or complementarity.
Geometric hashing [3] [4], which infers the most effective transformation needed
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to make compatible the interest points of both protein surfaces, has proved to be
one of the most effective approaches in this context.

Other approaches related to computer vision come from graph theory and
usually exploit discrete techniques to find the maximal clique [5] or the maximum
common subgraph [6] in graphs with vertices encoding information of parts of the
surfaces and edges representing topological ormetric relations between these parts.
However, the avenue of more efficient, though approximate, continuous methods
for matching [7] [8] [9] [10] recommends an exhaustive evaluation of graph-based
surface registration and docking under this perspective. One of this methods is the
graduated assignment algorithm known as Softassign and proposed by Gold and
Rangarajan [7]. Softassign optimizes an energy function, which is quadratic with
respect to the assignment variables, through a continuation process (deterministic
annealing) which updates the assignment variables while ensuring that a tentative
solution represents a feasible match, at least in the continuous case. After such
process, a cleanup heuristic translates the continuous solution to a discrete one.
However, it has been reported that the performance of this algorithm decays
significantly with increasing levels of structural corruption (number of deleted
nodes), and also that such a decay can be attenuated by optimizing an alternative
non-quadratic cost function [8]. Furthermore, in our preliminary experiments with
random graphs, we have reported a similar decay if we weight properly the original
quadratic function. Such a weighting relies on distributional information coming
from kernel computations on graphs. The key idea is that when working with non-
attributed graphs there is a high level of structural ambiguity and such ambiguity is
not solved by classical Softassign. However, when using kernels on graphs [12] [13]
we obtain structural features associated to the vertices which contribute to remove
ambiguities, because they help to choose a proper attractor in contexts of high
structural ambiguity. Kernels on graphs are derived from recent results in spectral
graph theory [14], particularly the so calleddiffusionkernels, andprovideameasure
of similarity between pairs of vertices in the same graphs. In the case of diffusion
kernels, such a similarity relies on the probability that a lazy random walk (a
random walk with a given probability of resting at the current vertex) reaches a
given node from another one.

In this paper, we address the problem of protein surface comparison from the
surface graphs extracted after labelling interest points/patches as concave or con-
vex. This labelling provides application-driven attributes, and we are interested
in knowing the role of structural attributes coming from kernel computation in
this context. In section 2, we present the kernelized Softassign with attributes. In
section 3 we present some representative experiments showing the application of
this algorithm to matching surface graphs, and, finally, in section 4, we present
our conclusions and outline our future work in this area.

2 Kernelized Softassign

Consider two graphs GX = (VX , EX) and GY = (VY , EY ), with m = |VX | and
n = |VY |, and adjacency matrices Xab, and Yij (Xab = 1 if (a, b) ∈ EX , and



334 M.A. Lozano and F. Escolano

the same holds for Y ). In the Softassign formulation a feasible solution to the
matching problem is encoded by a matrix M of size m×n with Mai = 1 if a ∈ VX

matches i ∈ VY and 0 otherwise, and satisfying the constrains that each node in
VX must match either a unique node in VY or none of them, and viceversa. Thus,
following the Gold and Rangarajan formulation we are interested in finding the
feasible solution M that maximizes the following cost function,

F (M) =
1
2

m∑
a=1

n∑
i=1

m∑
b=1

n∑
j=1

MaiMbjCaibj , (1)

(a)

(b)

KY =

⎡⎢⎢⎢⎢⎢⎢⎣

.524 .308 .120 .026 .007 .007 .007

.308 .336 .214 .065 .026 .026 .026

.120 .214 .280 .137 .083 .083 .083

.026 .065 .137 .191 .194 .194 .194

.007 .026 .083 .194 .475 .107 .107

.007 .026 .083 .194 .107 .475 .107

.007 .026 .083 .194 .107 .107 .475

⎤⎥⎥⎥⎥⎥⎥⎦KX =

[
.526 .317 .158
.317 .367 .317
.158 .317 .526

]

(c)

Fig. 1. Kernelized Softassign. (a) Kernel information for node 1 of graph Y and for all
nodes in graph X. (b) Matching with kernelized Softassign. (c) Kernel matrices
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where typically Caibj = XabYij . The latter cost function means that when a ∈ VX

matches i ∈ VY , it is convenient that nodes b adjacent to a (Xab �= 0) also match
nodes j adjacent to i (also Yij �= 0). This is the well-known rectangle rule (we
want to obtain the maximum number of closed rectangles MaiYijMjbXba as
possible.

Furthermore, let CK
aibj be a redefinition of Caibj by considering the informa-

tion contained in the diffusion kernels derived from X and Y . Such kernels are
respectively m×m and n×n matrices, satisfying the semi-definite condition for
kernels, which are derived from the Laplacians of X and Y . The Laplacian of X,
is the m×m matrix LX = DX −X, where DX is a diagonal matrix registering
the degree of each vertex, and the same holds for LY . It turns out that the
kernels KX and KY result from the matrix exponentiation of their respective
Laplacians:

KX = e− β
m LX and KY = e− β

n LY ,

where the normalization factors depending on the number of vertices of each
graph have been introduced to make both kernels comparable. Then, the def-
inition of CK

aibj involves considering the values of KX and KY as structural
attributes for the corresponding vertices (see Fig. 1) because as the Laplacians
encode information about the local structure of the graph, its global structure
emerges in the kernels. However, we have found that, as edit operations will give
different kernels in terms of the diffusion processes, it is not an adequate choice
to build attributes in the individual values of the kernels. Particularly, as for a
given vertex (row) these values represent probabilities of reaching the rest of the
nodes (columns), it can be considered that a given row represents a probability
distribution (see Fig. 1) and we may use a characterization of such distribution
to build structural attributes. Consequently, we define CK

aibj as follows

CK
aibj = XabYijδabijKabij , (2)

where
Kaibj = exp−[(HKX

a −HKY
i )2 + (HKX

b −HKY
j )2] , (3)

where HKX and HKY are the entropies of the probability distributions associated
to the vertices and induced by KX and KY , and δaibj = 1 if a matches a vertex i
with the same curvature, and also b matches a vertex j with a similar curvature;
otherwise it returns −1. This definition integrates the surface attributes in the
cost function. When curvature compatibility arises, the latter definition of CK

aibj

ensures that CK
aibj ≤ Caibj , being the equality only verified when nodes a and i

have similar entropies, and the same for nodes b and j. In practice, this weights
the rectangles in such a way that rectangles with compatible entropies in their
opposite vertices are preferred, and otherwise they are underweighted and do
not attract the continuation process. In such process, the matching variables are
updated as follows (before being normalized)

Mai = exp
[
− 1

T

∂F

∂Mai

]
= exp

[
1

2T

m∑
i=a

MbjC
K
aibj

]
, (4)
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To see intuitively how the kernelized version works, in Fig. 1 (vertices in dark
grey represent convex patches, whereas vertices in light grey represent concave
ones) we show the matching preferred by the kernelized Softassign just before
performing the clean-up heuristic. Such a matching is the most coherent one in
terms of structural subgraph compatibility.

3 Experimental Results and Discussion

The purpose of this paper is to test the reliability and efficiency of the kernelized
Softassign described above in protein surface comparison. Before considering
several protein families to test whether the approach is useful or not, we have
measured the decay of the normalized cost, that is, the optimal matching cost
between two graphs divided by the minimum of the self-matching costs for each
compared graph, as we introduce more and more structural noise. In Fig 2 we
show the results obtained for matching the protein 1crn with itself in the ideal
case (isomorphism) and after artificially removing some atoms. We observe a
progressive decay of the normalized cost.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Matching results for 1crn (328 atoms) with artificial noise. (a) Isomorphism
(cost = 1), (b) removing 10 atoms (cost = 0.9561), (c) removing 20 atoms (cost =
0.9203), (d) removing 30 atoms (cost = 0.9027), (e) removing 100 atoms (cost =
0.5528), (f) 150 atoms (cost = 0.547)
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1a00 1jtx 1a5k 1ser 1tca

1a0u 1jxw 1a5m 1ses 1tcb

1a0z 1jxy 1a5o 1sry 1tcc

graph 1a00 graph 1jxt graph 1a5k graph 1ser graph 1tca

Fig. 3. Examples of the five families used in the experiments. From left-right and top-
bottom: Hemoglobins, Crambin (plant proteins), Ureases, Seryl, Hydrolases. In the
surfaces, convex patches are represented in dark grey whereas concave patches are
showed in light grey. In the bottom row we show the graphs for the surfaces showed in
the first row

In order to build a representative experimental set, we have considered pro-
teins of five families extracted from the Protein Data Bank [15] (PDB): Cram-
bin/Plant proteins, Ureases, Seryl, Hemoglobins, and Hydrolases. Given the tri-
angulated Connolly surfaces of each protein, and considering the classification
of each surface point as belonging to a concave, convex or toroidal patch, we
have clustered the points in patches and we have associated each cluster to a
vertex in the surface graph. Retaining only concave and convex patches/vertices
we have obtained the edges of the surface graph through 3D triangulation of
the centroids of all patches. (see Fig. 3). The number of vertices in the surface
graphs range from 79 to 442 nodes, that is, we have heterogeneous families. We
want to demonstrate that the normalized cost is a useful distance for predicting
whether two proteins belong to the same family or not. Such a normalized cost
is bounded by 0 and 1, and the higher the cost the more similar the proteins
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(a) (b)

Fig. 4. Some matching results. (a) Correct matching between two proteins of the same
family (1jxt − 1jxu, with cost 0.7515). (b) Incorrect matching between proteins of
different families (1a5k − 1set, with cost 0.0701)

(a) (b)

Fig. 5. Matching results for several families: Hemoglobins (1a00, 1a01, 1a0u, 1a0v,
1a0w, 1a0x, 1a0z, 1gzx), Crambin (1jxt, 1jxu, 1jxw, 1jxx, 1jxy), Ureases (1a5k,
1a5l, 1a5m, 1a5n, 1a5o), Seryl (1ser, 1ses, 1set, 1sry) and Hydrolases (1tca, 1tcb,
1tcc). (a) Comparisons all-for-all. (b) Comparisons with all the prototypes

should be. In Fig. 4 (top row) we show some representative matching results.
Comparing proteins of the same family results in globally smooth matchings and
normalized costs above 0.5 (1jxt − 1jxu in Crambin). However, the cost falls
below 0.1 for many proteins of different families (comparing an urease and a
seryl, 1a5k − 1set, we obtain a cost of 0.0701) because in these cases it is not
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(1) 1pdr (2) 1qava (3) 1kwaa (4) 1be9a (5) 1m5za

(6) 3pdza (7) 1qlca (8) 1b8qa (9) 1i16 (10) 1nf3d

(a) (b)

Fig. 6. Comparison with 3D structure. Top: 1b8qa and the 9 closer proteins following
Dali scores but ordered by surface compatibility. Bottom left: Pairwise normalized
distances. Bottom right: RMS error given by Dali

possible to find globally consistent matches (only pairs of common subgraphs
are matched).

Another important fact to test is whether the kernelized version improves
significantly the performance of the classical version of Softassign. In our pre-
liminary experiments for the non-attributed case, where the effect of structural
ambiguity is higher, we have found that kernelization yields, in comparison with
the classical Softassign, a slower performance decay with increasing structural
corruption. However, this does not happen in our surface comparison experi-
ments because the concavity/convexity attributes constrain so much the num-
ber of allowable correspondences that there are few pure structural ambiguities.
However, although using kernelized or classical Softassign has a negligible im-
pact in the normalized cost obtained (see the bottom row in Fig. 4) we obtain
noise-free representative graph prototypes for different families. These prototyp-
ical graphs are interesting because an automatic clustering (see our previous
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work in [16]) and prototype building relying on the normalized cost yields an
useful abstraction for subsequent protein queries. First of all, we test whether
the normalized cost yields higher similarities between proteins in the same family
than between proteins of different families. In Fig. 5 (left) we show the all-for-all
similarities between proteins of different families (8 Hemoglobins, 5 Crambins,
5 Ureases, 4 Seryls, and 3 Hydrolases) which yields good clustering in the diag-
onal (white/grey level indicates high similarities). In Fig. 5 (right) we show the
similarities between each protein and the prototype of all classes which indicates
that the prototypical graphs obtained through both kernelized graph-matching
and incremental fusion are very representative.

Finally, we compare the similarities due to surface comparison to the similari-
ties due to 3D structure comparison (such information comes from the backbone
of the protein but not from its surface). One of the most effective methods
for 3D fold comparison is Dali [17] 1. In Fig. 6 we show the 9 proteins closer,
in terms of 3D structure, to 1b8qa. When analyzing these proteins in terms
of their surfaces we obtain three sparse classes: {1pdr, 1qava, 1kwaa, 1be9a},
{1m5za, 3pdza, 1qlca, 1b8qa}, and {1i16, 1nf3d}.

4 Conclusion and Future Work

In this paper we have presented a graph-matching method, relying on discrete
kernels on graphs, to solve the problem of protein surface comparison. We extract
the graphs describing the topology of the surfaces and perform efficient and
reliable graph matching by exploiting both application-driven and structural
attributes. Our experimental results with proteins coming from five different
families show that the normalized cost derived from the kernelized Softassign
algorithm is a useful similarity measure to cluster proteins and also to build
structural prototypes for each family. These prototypes may be very useful for
simplifying subsequent protein queries. Our future work in this field includes
the study of different graph kernels, the proposal of a full kernelized graph-
matching algorithm (not only the cost function) and the formalization of graph-
edit distances in terms of kernels.
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Abstract. In this paper we propose a novel approach to obtain unam-
biguous and robust node attributes for matching non-attributed graphs.
Such approach consists of exploiting the information coming from diffu-
sion kernels to embed the subgraph induced by the neighborhood of each
vertex in an Euclidean manifold and then use entropic graphs for mea-
suring the α−entropy of the resulting distribution. Our experiments with
random-generated graphs with 50 nodes show that at low edge densities,
where the effect of structural noise is higher, this approach outperforms
the description of the subgraph only in terms of diffusion kernels. Fur-
thermore, our structural recognition experiments show that the approach
has a practical application. All experiments were performed by weighting
the well-known quadratic cost function used in the Softassign algorithm.

1 Introduction

Considering object recognition, graphs yield useful invariant structural/relational
information of patterns [4]. Structural recognition covers both graph registration
and graph clustering. Considerable amount of research has been addressed in the
past towards solving the graph registration problem: graph-matching [9][26][18],
maximum clique finding [20], graph-edit distance minimization [23][5], and so
on. These approaches have to face two main problems: (i) constrain the consid-
erable amount of structural ambiguity arising in such representations; and (ii)
tolerate acceptable levels of structural corruption. Such problems must be solved
in order to provide globally-consistent registrations, and therefore, good metrics
for graph comparison. Considering graph clustering, although the registration
problem may be eluded if a proper mapping from graphs to a vector space is
found [19][1], globally-consistent registration has a deep impact in finding and
maintaining consistent graph prototypes [11][24]. For instance, in [14] we address
the chicken-and-egg problem of finding the prototypes, the optimal number of
classes, and classifying the graphs with an EM algorithm.

In our previous work we have addressed the problems of ambiguity and ro-
bustness by proposing sound node attributes for matching non-attributed graphs
[15][16][17]. We followed a spectral approach which is closely related to spectral

L. Brun and M. Vento (Eds.): GbRPR 2005, LNCS 3434, pp. 342–351, 2005.
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seriation [22]. So far, we have exploited kernels on graphs [12][25][13] in order
to weight the quadratic cost function of the classical Softassign algorithm [9]
(kernelized Softassign). Such weighting relies on characterizing the distribution
of kernel values for each vertex, because such values encode the probabilities of
reaching the rest of vertices from a given one. Our experimental results, when
using diffusion kernels, show that we obtain a matching performance comparable
to that obtained by using a non-quadratic cost function [8]. This result is due to
the fact that the structural characterization given by the kernel is good enough
for driving the graduated assignment method towards proper attractors in con-
texts of high ambiguity. Using random-generated graphs, we have performed
comparative experiments between diffusion kernels and other kernels belonging
to the more general class of regularization kernels. Such experiments show that
diffusion kernels outperform the rest of kernels, although at low edge densities
p-step random walk kernels outperform diffusion ones.

Furthermore, in practice, our structural recognition experiments report a
good stability of diffusion kernels for matching unweighted graphs with sizes
ranging from 30 to 140 nodes and coming from real images. This allowed us
to automatically build graph prototypes and classifying graphs in terms of the
distances to the closer prototype. One of the reasons of such success is that the
considered graphs were enough dense for removing ambiguity while tolerating
some degree of structural corruption. However, our previous results with random-
generated graphs predict that in real cases with lower edge densities the noise
tolerance will decay significantly. The relatively good behavior of p-step random
walk kernel, which is a local kernel for low values of p (typically we set p =
2) in these situations focused us to characterize the distributional information
more locally, that is, to compute the kernel of the subgraph induced by a given
neighborhood around each vertex and use a characterization of such distribution
to weight the Softassign quadratic cost function.

In this paper we show that this is not enough to increase the tolerance to
noise at low densities. However, mapping the vertices, with the aid of kernel
information, to an Euclidean manifold where they are considered as realizations
of a probability density, the entropic graphs approach [10][6] allows to charac-
terize such a density through the estimation of the α−entropy or Rényi entropy.
We report experimental results showing that the latter characterization yields a
weighting which is good enough for tolerating high levels of structural noise even
at low edge densities. In Section 2 we describe the application of entropic graphs
to this context. In Section 3 we present our experiments both with random-
generated graphs and with real graphs coming from images. We also show the im-
pact of this improvements in graph classification and we outline our conclusions.

2 Diffusion Kernels and Entropic Graphs

Given a undirected and unweighted graph G = (V, E) with vertex-set V of size
n, and edge-set E = {(i, j)|(i, j) ∈ V ×V, i �= j}, its adjacency matrix and degree
matrix are respectively defined as
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Aij =
{

1 if (i, j) ∈ E
0 otherwise and Dij =

{∑n
j=1 Aij if i = j

0 otherwise .
(1)

Then, the Laplacian of G, L = D−A is a matrix with Lij = −1 when (i, j) ∈ E
and with the degree values Lii = Dii in the diagonal. The Laplacian matrix
is key to compute the diffusion kernel K = e−σL, which is the solution of the
diffusion/heat equation [7]

d

dσ
Kσ = −LKσ (2)

and such a solution arises from exponentiating the spectrum of the Laplacian:

K = e−σL =
n∑

k=1

e−λkσφkφT
k that is Kij =

n∑
k=1

e−λkσφk(i)φk(j) , (3)

where {λk, φk} is the eigensystem of L. As L is symmetric, K = e−σL satisfies
the semi-definiteness conditions for kernels, and consequently the elements Kij

of such a Gram matrix represent similarities between pairs of vertices.
Furthermore, the similarities Kij given by the kernel have also a probabilistic

interpretation in terms of lazy random walks (see [12]): The transition probability
associated to the stochastic process z0, z1, . . ., being zl ∈ V , is p(zl+1|zl) = β :
(zl+1, zl) ∈ E with β ≤ 1/Dzlzl

, where the probability of remaining at each
vertex 1− βDzlzl

. Then, Kij can be interpreted as the sum of probabilities that
a lazy random walk takes each of the paths between vertices i and j, and we
have that K satisfies the conditions of a doubly stochastic matrix, that is

n∑
i=1

Kij = 1, j ∈ {1, 2, . . . , n} and
n∑

j=1

Kij = 1, i ∈ {1, 2, . . . , n} , (4)

The latter probabilistic interpretation and the fact that K is the solution to the
diffusion equation yield a connection with Gaussian distributions in continuous
spaces. As noted in [1], in the context of graph embedding, the similarities Kij

are closely related to the path length distribution

Kij = e−σ

|V |2∑
k=1

Pk(i, j)
σk

k!
, (5)

being Pk(i, j) the number of k−length paths between i and j, and such a distri-
bution is conserved, in terms of geodesic distances, when the graph is embedded
on a manifold in the Riemmann space. Furthermore, for a locally-Euclidean
manifold we have the following approximation (see also [3])

Kij ≈ 1

(4πσ)
d
2
e− 1

4σ2 w(i,j)2 that is w(i, j) ≈ 2
√
−σ ln{(4πσ)

d
2 Kij} , (6)

being w(i, j) the distance between vertices i and j on the Euclidean manifold
and d is the dimension of such manifold. Thus, the idea that the diffusion kernel
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is equivalent to the Gaussian kernel for discrete spaces yields a distance between
the embedded vertices. What is more interesting for us is the intuition that
the spatial distribution of these vertices yields a robust characterization of the
graph structure. Such intuition is supported by an approach, called entropic
graphs [10][6], which allows to estimate the entropy of the spatial distribution of
vertices on the unique basis of the pairwise distances between them.

Given the vertices i ∈ V in the d−dimensional Euclidean manifold, we map
them, through a multidimensional scaling process, to points xi ∈ IRd satisfying
||xi−xj || = w(i, j). Let eij = (xi,xj) the edges of T , the minimum spanning tree
(MST) connecting the latter points assuming that the cost of each connection
is ||eij || = w(i, j). It is obvious that the process yielding these distances w(i, j)
ensures that T ⊆ G, that is, eij = (i, j) ∈ E. Then, given γ ∈ (0, d), the weighted
length of the MST is defined as follows

Lγ,d({xi}) = mine∈T

∑
e

||eij ||γ (7)

The formal connection between Lγ,d and the characterization of the distribution
of mapped points is set by the Beardwood-Halton-Hammersley theorem[2] which
states that for d ≥ 2, γ ∈ [1, d) and α = (d− γ)/d we have the following limit

lim
n→∞

Lγ,d({xi})
nα

= βγ,d

∫
fα(x)dx , (8)

being the points {xi} a realization of a Lebesgue density f with compact support
in IRd. Also, for γ ∈ (0, d) the mean normalized weighted length E(Lγ,d({xi})/nα)
converges to the same limit. What is interesting of such limit is that its second
factor is a monotonic function of the Rényi entropy (or α−entropy):

Hα(f) =
1

1− α
log
∫

fα(x)dx being lim
α→1

Hα(f) = −
∫

f(x) log f(x)dx , (9)

that is, when α → 1 it converges to the Shannon entropy. Consequently

Ĥα(f) =
d

γ

[
log

Lγ,d({xi})
n(d−γ)/d

− log βγ,d

]
(10)

is an asymptotically stable and strongly consistent estimator of the α−entropy,
being βγ,d a constant which does not depend on f (we use the approximation
log βγ,d ≈ γ/2 log(d/2πe) in this paper).

Our motivation for introducing entropic graphs is that kernel information is
not robust enough to characterize even the local structure of the graph. Con-
sider, for instance a reference node i ∈ V and a neighborhood N(i) with all
vertices j satisfying d(i, j) = minΓ {l = |Γ | : Γ (0) = i, Γ (l) = j} ≤ δ, being Γ
a path between i and j. Such a neighborhood induces a subgraph given by the
vertices j ∈ N(i) and the edges (i, j) ∈ E between such vertices. Let gij = Kij

the discrete density induced by the kernel, and gi = Ki the discrete distribution
associated to the i−th row (vertex). If we measure the discrete Shannon en-
tropy of such distribution H(gi) = −∑n

j=1 gij log gij we find that such entropy
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Noise Uniform Grid Gaussian Grid
Central Corner Central Corner

Lγ,d Hα(fi) H(gi) Lγ,d Hα(fi) H(gi) Lγ,d Hα(fi) H(gi) Lγ,d Hα(fi) H(gi)
0 67.69 4.97 1.06 26.16 4.11 0.55 90.08 5.27 1.81 31.83 4.30 0.29
1 65.73 5.00 0.83 26.17 4.11 0.55 90.06 5.27 1.66 31.83 4.30 0.29
2 65.70 4.97 0.83 26.10 4.11 0.55 88.13 5.25 1.27 31.83 4.30 0.29
3 59.94 4.89 0.57 26.10 4.11 0.55 88.03 5.25 1.27 20.51 3.89 0.28

Fig. 1. Illustrating Entropic Graphs. First row: Graph from an uniform grid. Third
row: Graph from a Gaussian-like grid. Second and Fourth rows: α−entropies for each
vertex. Bottom table: Comparison between Hα and H. In all cases the edges of the
graphs are showed in grey and the edges of the MSTs are showed in black
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changes significantly with minor edit operations located at such neighborhood .
As kernels rely on spectral information, this reasoning is consistent with the fact
that spectral seriation is prone to editing vertices or edges in the neighborhood
of the leading ones. Analyzing the two graphs in Fig. 1 at different levels of edge
noise (removing 0,1,2 and 3 edges) and considering δ = 4 we observe that with
increasing levels of noise the structure of the central node is confused with that
of the upper-left corner in the uniform grid.

However, when we measure Hα(fi), the α−entropy in the subgraph induced
by N(i) we obtain a stronger tolerance to structural noise (we will provide sound
experimental results in the following section). What is the contribution of en-
tropic graphs to such increase of robustness? Intuitively, what happens is that
although the distances ||xi − xj || between the mapped points rely on the kernel
values, when such values are changed the estimation of the α−entropy is sound
provided that an alternative MST with similar cost exists. Thus, from the point
of view of entropic graphs, the impact of edit operations depends on the exis-
tence of alternative paths for yielding the same estimation. Considering again
Fig. 1, the cost of the MST is quite stable as the structural noise is increased.
In the particular case of the second example graph (Gaussian Grid) the effect of
removing many of the edges of the central node has no impact in the descriptor.
It seems that the MST is reorganized effectively from the non-removed edges. In
all cases α = 0.5 (γ = 1 and d = 2).

3 Experimental Results and Discussion

For our experiments we have compared the weighing of the well-known quadratic
cost function used in Softassign depending whether we use Hα relying on MST
computation or H relying on kernel computation. In order to study the effect of
such descriptors in the global consistency of the algorithm we have performed two
sets of experiments: (i) using random-generated graphs (synthetic experiments)
and (ii) using real graphs (recognition experiments).

Synthetic Experiments. In Fig. 2 we show some results obtained with graphs
of 50 vertices. We report that at low levels of edge density the entropic graph
approach (EG) outperforms clearly both the global diffusion kernel (GDK) and
the local (subgraph) diffusion kernel (LDK). At high levels of edge density the
differences of performance between them is negligible. Furthermore, as we have
reported in our previous work such a performance is better than the obtained
when using cardinality. These results, where noise is modelled by edge edition, is
also consistent with node-edition noise, although the rate of performance decay
is higher in all cases (we have not included these experiments in the paper due
to space constraints).

Recognition Experiments. We have considered the CMU, MOV1 and Chalet
sequences, which are associated to observing different objects (houses) from a
smooth range of viewpoints (10 frames). The CMU sequence has graphs of 30
vertices on average, with an averaged corruption of 10% between consecutive
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Fig. 2. Synthetic matching results. Graphs (first column) and nodes (second column)
successfully matched with an edge density of 10% (first row), 20% (second row) and
30% (third row)

frames. The MOV1 sequence is very sparse (has graphs with 40 to 113 vertices)
and the Chalet sequence has graphs of 131− 140 vertices. In the first two rows
of Fig. 3, we show very good matching results between graphs associated to con-
secutive frames (graph tracking) of the CMU sequence (almost 100% of success).
In the third and fourth rows we show also good tracking results even for the
Chalet sequence which has very big graphs.
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Fig. 3. Recognition results. First and second rows: CMU sequence. Third and fourth
row: Chalet sequence

In order to address the problem of graph classification we have obtained
the confusion matrix given by the normalized distances between all pairs of
graphs in the three sequences: CMU, MOV1 and Chalet (see Fig. 4(a)). White
indicates 100% of matching success (low distances) and black indicates 0% of
success). We have also obtained the prototypes for the three sequences with our
EM algorithm described in [14] and we have computed the minimal normalized
distance between each graph and the three prototypes: The first 10 rows in
Fig. 4(b) corresponds to CMU, the next ones to MOV1 and the rest to Chalet;
the first column corresponds to the CMU prototype, the second to the MOV1
one and the third to the Chalet one. Considering the CMU prototype, graphs are
well classified; for MOV1 and Chalet, the results are acceptable if one considers
the high level of sparseness of these classes and the high number of vertices
(in the case of the Chalet sequence). We conclude that due to the improved
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(a) (b)

Fig. 4. Classification results. Left: Normalized pairwise distances between graphs.
Right: Minimal distances to the prototypes

cost function, these classification results outperform slightly our previous results
obtained with the GDK (global diffusion kernel) approach [17]. The reason of
a such slight improvement is the fact that these experiments correspond to a
medium edge density where all the latter approaches have a similar performance.
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Abstract. In this paper we propose the use of a simple kernel function
based on the graph edit distance. The kernel function allows us to apply
a wide range of statistical algorithms to the problem of attributed graph
matching. The function we describe is simple to compute and leads to
several convenient interpretations of geometric properties of graphs in
their implicit vector space representation. Although the function is not
generally positive definite, we show in experiments on real-world data
that the kernel approach may result in a significant improvement of the
graph matching and classification performance using support vector ma-
chines and kernel principal component analysis.

1 Introduction

In recent years results from statistical learning theory [1] have successfully been
applied to various pattern recognition problems. The Support Vector Machine
(SVM) classifier, among other kernel machines, has performed particularly well
on a number of data sets [2, 3]. The development of specific kernel functions such
as diffusion kernels, convolutional kernels, and marginalized kernels lead to the
application of kernel machines to the structural domain of graphs and strings
[4, 5, 6, 7, 8]. In constrast to feature vectors, graphs allow for a more powerful
representation of structured data. To measure the similarity of graphs, various
formalisms have been proposed, ranging from exact methods such as subgraph
isomorphism and maximum common subgraph computation to error-tolerant
methods based on continuous optimization theory and the spectral decomposi-
tion of graph matrices [9, 10, 11, 12, 13]. Another graph matching approach that
has become quite popular is the concept of the graph edit distance [14, 15, 16].
In graph edit distance, the main idea is to model graph difference through a
sequence of edit operations, which leads to a dissimilarity measure on graphs.

In the present paper, we propose to use kernel functions based on the edit
distance to classify graphs, instead of performing a simple nearest-neighbor clas-
sification in the original graph space. In Sect. 2 and 3, graph edit distance and
kernel machines are briefly reviewed. The proposed kernel function is described
in Sect. 4. Experimental results are presented in Sect. 5, and some concluding
remarks follow in Sect. 6.
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2 Graph Edit Distance

In graph matching, patterns represented by graphs are classified based on their
structural similarity. For this purpose, several similarity measures have been de-
fined for different classes of graphs. In the following, we consider the case of
numerically labeled graphs. That is, nodes and edges may contain vector at-
tributes to make the graph representation more powerful. One of the most com-
mon similarity measures for general attributed graphs is the graph edit distance
[14, 15, 16]. The key idea is to describe variations in the structure of graphs by
sequences of basic edit operations. A standard set of edit operations consists of
insertion, deletion, and substitution operations for nodes and edges. To allow for
application-specific similarity measures, it is common to introduce edit costs for
edit operations, so that the edit distance of two graphs can be defined by the
least expensive sequence of edit operations, or edit path, that transforms one
graph into the other.

After computing distances of an input graph to a number of known graphs,
the classification of the input pattern is often performed by means of a nearest-
neighbor approach, where the neighborhood of every known graph, according to
the edit distance, is associated with its class. Theoretical results and practical
experiments [17, 18] suggest that nearest-neighbor algorithms are appropriate
for pattern recognition problems of various difficulty. Yet, the distances of the
input graph to some or all of the known graphs could also be regarded as a
vector representation of the graph, thus embedding the input graph in a vector
space. As a major advantage, a vector space representation allows us to apply
a large number of powerful statistical algorithms to the classification problem.
In the remainder of this paper, we will explore the feasibility of using simple
kernel functions to apply such algorithms to attributed graphs. In this context,
the vector space embedding of the graphs follows implicitly and need not be
explicitly constructed.

3 Kernel Machines

The recent widespread use of kernel machines is primarily due to their successful
application to various pattern recognition problems [2, 3]. Instead of solving a
classification problem in its original domain, the basic idea is to map patterns
into a Hilbert space (vector space with an inner product) and find a solution
for the vector representation of the patterns [1, 19]. While linear algorithms in
the original pattern space may be efficient and easy to compute, they are unable
to take non-linear pattern relations into account. By using non-linear transfor-
mations when mapping from the original domain into the vector space, we ob-
tain non-linear generalizations of well-known linear algorithms. Cover’s theorem
on the separability of patterns [20] states that a complex pattern classification
problem cast non-linearly into a high-dimensional space is more likely to be lin-
early separable than in a low-dimensional space. A principal component analysis
(PCA) in the original pattern space, for instance, will only detect linear struc-
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tures, whereas after mapping the data non-linearly into a vector space, a PCA
may lead to non-linear principal components in the original space.

It turns out that it is sufficient for many statistical algorithms to evaluate
inner products of vectors instead of carrying out the actual mapping into the
vector space. These algorithms include PCA, fisher discriminant analysis, and
SVMs, among many others [19]. Due to the work by Vapnik [1], the theoretical
learning, convergence, and generalization propertiesof SVMs are mathematically
well founded and well-known. Numerous application results suggest that SVMs
offer a good compromise between the ability to generalize well on unseen data
and to correctly classify the training vectors.

For arbitrary pattern spaces X, the existence of a positive definite [21] kernel
function k : X × X → R mapping pairs of patterns to real numbers is suffi-
cient for the existence of a corresponding Hilbert space H such that the inner
product of two mapped patterns is equal to the kernel function evaluated on
the two patterns before mapping [19, 21]. That is, the kernel function acts as a
shortcut and returns the value of the inner product in H without the need of
actually mapping the patterns. This substitution is sometimes referred to as the
“kernel trick”. Given any kernel machine, the algorithm is implicitly carried out
in the accompanying Hilbert space, while in fact only the kernel function in the
original space must be evaluated. Since the kernelized algorithms only require
the evaluation of inner products of patterns, but need not know the patterns
itself, it suffices to replace the inner product in the algorithms with the kernel
function. Note that the property of positive definiteness has been derived for a
number of functions [21].

4 Distance Kernels

Our objective is to define a kernel function based on the graph edit distance.
In the following, let us assume that G denotes the space of attributed graphs
and the function d : G × G → R+ ∪ {0} denotes the graph edit distance. For
a specific sample set of graphs, if the negative element-wise squared matrix of
edit distances turns out to be conditionally positive definite [21], the function
k : G × G → R, given by

k(x, x′) =
1
2
(
d(x, x0)2 + d(x0, x

′)2 − d(x, x′)2
)
,

where x0 ∈ G can be arbitrarily chosen, is known to be positive definite [21]
and thus qualifies as a kernel function in the context of kernel machines. The
existence of such a kernel function implies the existence of a mapping from
the space of graphs G into a Hilbert space and a corresponding inner product.
Furthermore, it allows us to derive geometric properties from the Hilbert space
and apply them to the space of graphs.

The concept of Euclidean distances and angles, for instance, can easily be
formulated for graphs in their vectorial representation. First of all, one can show
that the kernel function k described above implies that the Euclidean distance of
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two graphs in the vector space is equal to their respective edit distance. Hence the
vector space preserves distances from the graph space. Kernel machines evaluat-
ing Euclidean distances will therefore operate, in fact, on graph edit distances.
Next, the length of a graph in its vector representation is found to be equal to
its edit distance to x0. In the Euclidean space the length of a vector is defined by
its distance to the origin, hence the graph x0 ∈ G acts to a certain extent simi-
larly to the zero vector in Rn. Also, considering angular properties we arrive at
analogous observations. The angle between a graph and x0 is undefined, and the
angle any graph encloses with itself is 0. Moreover, two graphs are found to be
orthogonal if the edit distances between the two graphs and x0 form an orthog-
onal triangle. These observations show that the implicit vector space embedding
of the graphs seems to be reasonable in terms of geometric properties.

In analogy to the case of inner products in Euclidean vector spaces, the kernel
function defined on pairs of graphs can be considered a similarity measure: The
larger its value, the higher the similarity of the two graphs. If we regard the
edit distance function d for a moment as a metric distance measure in a vector
space, the kernel function can be interpreted geometrically: The similarity of two
graphs x and x′ is then defined by the overhead imposed by going from x via
x0 to x′ compared to going straight from x to x′. That is, if the indirect path
is only slightly longer than the direct path, which is certainly true for graphs
far away from each other, the similarity will be low. On the other hand, if the
direct path is much shorter than the indirect path, which is true for graphs close
to each other, the similarity will be high. An illustration of this obversation is
provided in Fig. 1.

x’1

x’4

x’3

x’2

x05x’ = x
δ δ

δ

δ

δ0.7δ

1.8δ
1.4δ

Fig. 1. Illustration of graph distance kernel. k(x, x′
1) = −δ2, k(x, x′

2) = −0.7δ2,
k(x, x′

3) = 0, k(x, x′
4) = 0.7δ2, k(x, x′

5) = δ2

The result of the kernel function is obviously strongly dependent on the choice
of a graph x0. A few possible kernels are given below, where kx0 is used to denote
the kernel with respect to graph x0, depending on which property of the kernel
function is to be emphasized:

k(x, x′) = kxmedian (x, x′) (1)
k(x, x′) = kxfurthermost (x, x′) (2)
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k(x, x′) = kxempty (x, x′) (3)

k(x, x′) =
∑

xi

kxi
(x, x′) (4)

k(x, x′) =
∏

xi

kxi
(x, x′), (5)

where xmedian , xfurthermost , and xempty denote the set median of the training
graphs, that is, the training set graph with the smallest average distance to all
other training set elements [22], the training set graph with the highest average
distance to all other training set graphs, and the empty graph, respectively, and
the summation and multiplication is done over all graphs from the training set.

For negative element-wise squared graph edit distance matrices the property
of conditional positive definiteness is not generally satisfied. Yet, it is possible to
construct a related positive definite matrix for every indefinite matrix such that
some conditions are fulfilled [23]; for instance, such that only diagonal elements
of the matrix are modified. The Modified Cholesky algorithm, naive Cholesky
factorization, and methods based on the spectral decomposition of the kernel
matrix are some of the most common of these algorithms.

5 Experimental Results

To evaluate the graph kernel approach, we apply the Kernel PCA and the SVM
algorithm to the problem of fingerprint classification. In fingerprint classification,
the objective is to divide fingerprints into classes based on characteristics of their
global ridge flow. For our experiments we take 250 grayscale fingerprint images
from the NIST-4 database [24] — 50 from each class arch, tented arch, left loop,
right loop, and whorl. An example of a whorl image is shown in Fig. 2a. The
images are converted into graphs using an approach similar to the segmentation
of the orientation field proposed by Lumini et al. [25]. To separate the image
foreground from the background, we compute the variance around each pixel
and mark low-variance pixels as background. We proceed by applying a discrete
Sobel operator to every pixel in order to obtain an estimate of the gradient of
the ridge flow. After a smoothing procedure we obtain a ridge orientation field
as illustrated in Fig. 2b. We eventually obtain a graph structure by representing
pixel windows by nodes and the average direction of a window by edges. An
illustration is provided in Fig. 2c. Nodes contain no attributes, but edges carry
an angle attribute giving the average direction discretized to one out of the eight
main directions.

The edit cost functions we use are defined as simple as possible: We assign
constant costs cn to node insertions and deletions, constant costs ce to edge
insertions and deletions, and zero costs to node substitutions (since all nodes are
unlabeled). Edge substitution costs are set proportional to the absolute difference
of the two involved edge angle attributes (taking the angular circularity into
account). Note that no extensive optimization of the parameters is needed for
this simple cost function.
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a) b) c)

Fig. 2. a) Fingerprint image f0011 from NIST-4, b) its average ridge orientation field,
and c) the corresponding orientation graph

The 250 resulting graphs contain an average of 185 nodes and 206 edges
per graph at a resolution of 32 × 32 pixels per window. Due to the large size
of the graphs, the standard computation of the edit distance — which is only
feasible for graphs with up to about 10 nodes — is intractable. Therefore, we
employ an efficient approximate algorithm for the edit distance computation
[26]. The approximate algorithm performs a locally optimal matching of the
structure using an efficient node alignment technique with respect to edges, so
that the resulting approximate distance provides an upper bound of the exact
edit distance. Experiments show that the running time and memory requirements
can thus be reduced by several orders of magnitude.

In our experiments we first perform a leave-one-out nearest-neighbor classi-
fication in the original graph space using the edit distance. That is, we classify
every graph according to its closest neighbor in the training set and compute
the overall recognition rate. This recognition rate of the leave-one-out classifier is
used as a benchmark against which the proposed kernel methods are compared.

The result of the Kernel PCA computation is a set of principal components
of the original graphs. In other words, the attributed graphs are transformed
into principal components of the implicit vector space representation. Moreover,
a weight is associated with every principal component that corresponds to the
amount of variance that can be explained by the component. For an example,
the first four principal components we obtain in our first experiment account
for 15% of the variance. A dimensionality reduction of the resulting data can be
achieved by dropping the least significant components. In the (reduced) vector
space we can again compute the leave-one-out nearest-neighbor recognition rate
based on the Euclidean distance.

Using the Median kernel and the Kernel PCA algorithm on the dataset de-
scribed above, a leave-one-out recognition rate of up to 65% is obtained in the
principal component space, while the corresponding leave-one-out recognition
rate in the graph space amounts to 49%. In fact we observe that for most di-
mensions the classifier in the principal component space outperforms the original
classifier by a margin of 10% and more. A graphical illustration of the Kernel
PCA results is shown in Fig. 3. From this experiment, we conclude that the kernel
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Fig. 3. Nearest-neighbor classifier performance in principal component space of graphs
and in original graph space

function is able to detect relevant non-linear relations. Even a three-dimensional
vector representation of the original graphs and the standard Euclidean distance
instead of the edit distance leads to an improved recognition rate.

In our second experiment, we evaluate the performance of an SVM on the
same dataset. The 250 fingerprint graphs are divided into a test set and a training
set. In the case of the nearest-neighbor classifier in the graph space, the training
set is the set of known prototypes, and the graphs from the test set are classi-
fied according to the nearest-neighbors from the training set. For large training
sets, we expect the nearest-neighbor classifier to perform well, as it should be
able to model arbitrarily complex decision functions. For smaller training sets,
however, the nearest-neighbor prototypes might not cover the region of interest
sufficiently well, particularly if classes are non-compact and overlapping. Simi-
larly, a small training set may affect the ability of a SVM to generalize well on
unseen patterns, for the resulting support vectors heavily depend on the posi-
tion of single patterns. In order to evaluate the behavior of the nearest-neighbor
classifier and the SVM, we vary the number of training and test samples: The
test set is chosen to contain the first k graphs from every class and the training
set to contain the remaining 250− 5k graphs. Thus for k = 1, for instance, the
test set contains a single graph from each of the 5 classes and the training set
the remaining 245 graphs. Hence with an increasing number of test samples, the
training set decreases at equal rate.

The performance of the nearest-neighbor classifier in the graph space and the
SVM are evaluated for different numbers k ∈ {1, . . . , 49} of test elements per
class. The resulting recognition rates are illustrated in Fig. 4. First we note that
the SVM recognition rate on the training set increases as expected with a de-
creasing number of training samples, as it becomes easier to find class boundaries
for smaller samples. Conversely, the nearest-neighbor recognition on the test set
degrades when decreasing the number of known prototypes. The same tendency
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Fig. 4. Performance of nearest-neighbor classifier in graph space and SVM classifier

can also be observed in the case of the SVM recognition on the test set, but is
less evident. The extreme cases of very few training elements and very few test
elements are not representative. For the meaningful range of k ∈ {10, . . . , 40},
the recognition rate obtained with the Median graph kernel SVM is inferior to
that of the nearest-neighbor classifier in only 2 out of 31 cases.

In our third experiment, we apply the SVM classifier to the task of diatom clas-
sification. Diatoms are unicellular algae occurring in water and humid places on
earth [27]. Their classification is an important, but difficult task in various disci-
plines such as environmental monitoring and climate research. We use a database
consisting of diatom images from 22 classes containing 5 elements each. By means
of a segmentation process, diatom images are transformed into attributed region
adjacency graphs. The edit cost function reported in [28] defines node insertion
and deletion costs proportional to the size of the corresponding region and sub-
stitution costs proportional to the Euclidean distance of attributes. In addition,
splitting and merging operations of nodes can be carried out for free to account
for over- and under-segmentation errors. Details about the graph representation
and the extraction process are reported in [28]. Using a nearest-neighbor classifier
in the graph space, we obtain a leave-one-out recognition rate of 71.8%, whereas
the leave-one-out recognition rate of the SVM (sum kernel, Modified Cholesky al-
gorithm) amounts to 85.0%. Hence we find that the SVM is able to outperform
the best recognition rate reported for this dataset [28], even without optimizing
parameters and using a simpler cost function (no node splitting and merging op-
erations and constant insertion and deletion costs) than the one applied in [28].

6 Conclusions

In the present paper we describe a simple kernel function for attributed graphs
that is based on the computation of the graph edit distance. A common approach
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to using the edit distance for graph classification includes a nearest-neighbor ap-
proach of some sort, as the space of attributed graphs offers only a distance
measure, but no additional information about the structure of the patterns in
this space. Using a kernel function, this limitation can be overcome, since var-
ious statistical algorithms can be applied in an implicitly existing vector space
where every graph is represented by a vector. The kernel function we describe
is determined by the edit distance of graphs. It turns out that a number of ge-
ometric properties can be derived that suggest that the kernel function vector
space embedding of the graphs is reasonable. To evaluate the kernel approach in
comparison to a nearest-neighbor classifier, we perform a Kernel PCA and train
an SVM on attributed graphs extracted from fingerprint images and graphs ex-
tracted from segmented diatom images. The resulting graph classification in the
principal component space and the SVM classification outperform the nearest-
neighbor classification in most cases. In the future, we intend to study the ap-
plicability of the proposed kernel function to other real-world graph and string
data. Also, we would like to further investigate what properties a well-performing
origin graph x0 needs to satisfy.
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Abstract. In this paper we develop a new graph representation based
on the path-weighted adjacency matrix for characterising global graph
structure. The representation is derived from the heat-kernel of the graph.
We investigate whether the path-weighted adjacency matrix can be used
for the problem of graph partitioning. Here we demonstrate that the
method out-performs the use of the adjacency matrix. The main advan-
tage of the new method is that it both preserves partition consistency
and shows improved stability to structural error.

1 Introduction

Many combinatorial problems in computer vision can be posed as locating a
partition of the vertices of a given graph into subsets that satisfy mutual con-
sistency constraints. The problem arrises in electronic circuit design, parallel
processing [15], graph coloring [16], clustering [12] and segmentation [14, 10]. As
a concrete example from the computer vision and pattern recognition literature,
Shi and Malik [14] have shown how the image segmentation problem can be
posed as one of graph partition and have shown how the normalized cut method
can be used to locate approximate solutions. Pavan and Pelillo [10] improve the
partition measure by introducing the concept of a dominant set. The resulting
utility measure is optimised using a relaxation scheme, and is applied to the
problems of graph clustering and image segmentation. In prior work [11, 12],
aimed at realizing inexact graph matching using a subgraph decomposition, we
have shown how graphs can be partitioned into non-overlapping subunits using
the Fiedler vector, i.e. the eigenvector associated with the second smallest eigen-
value of the Laplacian matrix. In this paper we aim to investigate whether this
method can be improved using a more robust partition measure motivated by
the study of the heat-kernel of the graph [6].

Kernel-based methods have been widely used for pattern recognition and
have lead to the development of a number of methods including support vector
machines [5] and kernel PCA [13]. For instance, Watkins et al. [7] have used a
modified string kernel for categorizing text documents. Kondor and Lafferty [6]
have surveyed the more general class of exponential kernels, which are applicable
to a wide variety of symbolic or discrete entities. Of the alternatives, one of
the most important is the heat kernel, which is found by solving the diffusion
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equation for the discrete structure in-hand. The heat kernel is an important
analytical tool, which has been used in many areas. In spectral graph theory,
Chung [4, 3] has summarised some of the important properties of heat kernel.
Belkin and Niyogi [2] have used the connections between the Laplacian and the
heat kernel to embed patterns in a high dimensional space for the purposes of
visualisation and clustering.

The aim in this paper is to investigate whether the information conveyed by
the heat kernel can be used for characterising the structure of graphs. We seek
a more globalized graph representative for the purpose of graph simplification
and graph clustering than can be achieved using the adjacency matrix alone. We
use the heat-kernel to construct a path-weighted adjacency matrix to represent
the graph structure. The weighting process aims to smooth away the effects of
structural error due to node or edge deletions. We explore whether this repre-
sentation can be used to characterise the graph globally and whether it is stable
under structural error. In particular, we explore its use in conjunction with our
recently reported graph partition method [11, 12].

2 Weighted Laplacian Matrix and Normalized Laplacian
Matrix

Let the weighted graph G be the quadruple (V, E, Ω, ω), where V is the set of
nodes, E is the set of arcs, Ω = {Wu,∀u ∈ V } is a set of weights associated
with the nodes and ω = {wu,v,∀(u, v) ∈ E} is a set of weights associated with
the edges. Further let D = diag(dv; v ∈ V (G)) be the diagonal weighted degree
matrix with Du =

∑n
v=1 wu,v. The un-normalised weighted Laplacian matrix is

given by L = D −A, and has elements given by

Luv(G) =

⎧⎨⎩
∑

〈u,k〉∈E wu,k if u = v

−wu,v if u �= v and (u, v) ∈ E
0 otherwise

(1)

The normalized weighted Laplacian matrix on the other hand is defined to be
L̂ = D−1/2LD−1/2, and has elements

L̂uv(G) =

⎧⎨⎩
1 if u = v
− wu,v√

dudv
if u �= v and (u, v) ∈ E

0 otherwise
(2)

The normalised Laplacian L̂ can also be viewed as a harmonic operator that
acts on the function f : V (G) �→ % with the result that L̂f(x) =

∑
x′ L̂x,x′f(x′).

The spectral decomposition of the normalised Laplacian matrix is L̂ = ΦΛΦT =∑|V |
v=1 λvφvφT

v . where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the
ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the
ordered eigenvectors as columns.
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3 Heat Kernel and the Path-Weighted Matrix

We are interested in the heat equation associated with the Laplacian, i.e. ∂Ht

∂t =
−L̂Ht where Ht is the heat kernel and t is time. The solution is found by expo-
nentiating the Laplacian eigenspectrum i.e. Ht = Φ exp[−tΛ]ΦT . The heat kernel
is a |V | × |V | matrix, and for the nodes u and v of the graph G the resulting
component is

Ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (3)

3.1 Path Length Distribution

Let us consider the matrix P = I − L̂, where I is the identity matrix, then the
heat kernel can be rewritten as Ht = e−t(I−P ). We can perform a McLaurin
expansion on the heat-kernel to re-express it as a polynomial in t. The result of
this expansion is

Ht = e−t(I−P )

= e−t

(
I + tP +

(tP )2

2!
+

(tP )3

3!
+ · · ·

)
= e−t

∑
r

P r tr

r!

We have used the eigendecomposition of the normalised Laplacian P r = (I −
L̂)r = Φ(I − Λ)rΦT and as a result

P r(u, v) =
∑

i

(1− λi)rφi(u)φi(v) (4)

If, on the other hand, we consider the element-wise definition of P

P (u, v) =

⎧⎨⎩
1 if u = v

wu,v√
dudv

if u �= v and (u, v) ∈ E

0 otherwise
(5)

then we have that

P r(u, v) =
∑
sr

∏
i

w(ui, ui+1)√
dui

dui+1

(6)

Hence, P r can be interpreted as the sum of weights of all walks of length r
joining nodes u and v. A walk Sr is a sequence of vertices u0, · · · , ur such that
ui = ui+1 or (ui, ui+1) ∈ E. By defining P (u, u) = 1, we create a self-loop for
each node on the walk. So the walk can pause on any node for a number of
steps before the next move. This gives us better behaved distribution of P r over
the path length r. Here the definition of P (u, u) = 1 is important because it
allows self-loops in the adjacency matrix. In this paper, we aim to exploit the
fact that the matrix P r contains information concerning the inter-node distance
distribution to construct a measure that can be used to partition graphs.
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3.2 Proximity Weights

Our idea is to use the distribution of distances to compute the average path-
length between pairs of nodes in the graph. For the nodes u and v the average
path-length is given by

d̂(u, v) =
∑

r rP r(u, v)∑
r P r(u, v)

(7)

This average distance measure can be used to compute a Gaussian weighted
node proximity matrix. For the nodes u and v the proximity weight is given by
path-weighted matrix.

Wuv(G) = exp

[
− d̂2(u, v)

2σ2(u, v)

]
(8)

where

σ2(u, v) =
∑

r(r − d̂(u, v))2P r(u, v)∑
r P r(u, v)

(9)

is the variance of the path-length distribution for nodes u and v.

3.3 Properties of the Proximity Matrix
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Fig. 1. Delaunay graph from detected corner triangulations

The proximity matrix
defined in the previous
section has some inter-
esting properties that
distinguish it from the
raw adjacency matrix.
Here we focus on some
of these in detail.

Firstly, although the
adjacency matrix may
contain a significant
number of zero off-
diagonal entries, pro-
vided that the graph
under study is con-
nected, then the path-
length proximity ma-
trix will not have zero
off-diagonal entries since a path of finite length can always be located between a
pair of nodes. The consequence of this is that path-length proximity matrix will
be less likely to be singular or to have a zero determinant.

Second, nodes which have a similar locations with respect to the boundary of
the graph will have similar path-weight values. Since the matrix is constructed
using node distance, the nodes on the boundary will have different values to
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Fig. 2. Distribution of P r based on the path step r

those near the centre of the graph. This means that the measure could be useful
for the purposes of assigning node affinity in the problem of graph-matching.

Figure 1 shows a Delaunay triangulation as an illustration of the points men-
tioned above. Figure 2(a) and Figure 2(b) show P r(u, v) as a function of r for
the nodes labelled 1 and 17 in the Delaunay graph. The different curves are
obtained when v runs over the remaining nodes of the graph, and are labelled
with node number. From the figure we can see that P r(u, u) always takes on
the largest value, irrespective of r, since it counts the number of loops of length
r to node u. The remaining curves are ordered in descending order according
to whether nodes are first, second or third etc. neighbours. The most distant
nodes are associated with the smallest values of P r(u, v). Another important
property is that the nodes in the interior of the graphs always have larger values
of P r(u, v) than those on or near the boundary.

Finally, we note that when compared to the binary adjacency matrix, the
path-weighted proximity matrix is more robust to changes in graph structure. To
illustrate this point consider the deletion of an edge. In the case of the adjacency

5 10 15 20 25 30

5

10

15

20

25

30

(a) Adjancency
matrix

5 10 15 20 25 30

5

10

15

20

25

30

(b) Distance
matrix d̂

5 10 15 20 25 30

5

10

15

20

25

30

(c) Delta
matrix δ

5 10 15 20 25 30

5

10

15

20

25

30

(d) Path-weighted
matrix WG

Fig. 3. Similarity matrices
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matrix, two symmetrically placed elements flip from one to zero. Hence, all
memory of the edge is lost. However, in the case of the path-weighted proximity
matrix the mean distance between the nodes is increased.

For the graph shown above, in Figure 3 the four panels show the adjacency
matrix, the matrix of path weighted distances d(u, v), the path length variance
σ(u, v) and the path weighted proximity matrix Wuv(G). The entries in the
adjacency matrix correspond to maxima in the weight matrix.

4 Graph Partition Method

Generally speaking, graph partition aims to decompose a graph into non-
overlapping sets of nodes so as to minimize a cost function.

In a recent paper [11], we addressed the problem of partitioning graphs into
non-overlapping supercliques. The superclique of the node i consists of its cen-
ter node, together with its immediate neighbours Ni connected by edges in the
graph, i.e., Ci = {i} ∪ {u; (i, u) ∈ E}. Our next step is to partition the graph
into a set of non-overlapping supercliques using the node order defined by the
Fiedler vector. The Fiedler vector is the eigenvector corresponding to the sec-
ond smallest eigenvalue of the Laplacian matrix. Instead of using the original
adjacency matrix, we use the path-weighted matrix since it contains more global
information concerning the structure of the graph than the adjacency matrix
which contains information concerning only its immediate neighbours.

Fig. 4. Graph Partition

We commence by assign-
ing weights to the nodes
on the basis of their rank-
order in the path defined
by the Fiedler vector. We
first sort the nodes in
descending order accord-
ing to the magnitude of
the corresponding compo-
nent of the Fiedler vec-
tor. The order is given by
Π∗ = {π1, π2, π3, . . . , πn}T

with πi > πi+1. Having
the vector sorted, we as-
sign weights on the nodes
based on their rank order
Ψi = Rank (πi). With this
weighted graph in hand, we
can gauge the significance
of each node using the score
function: Θi = α (Deg(i) + |Ni ∩ Φ|) + β

Ψi
. where Φ is the set of nodes on the

perimeter of the graph. The first term depends on the degree of the node and its
proximity to the perimeter. Hence, it will sort nodes according to their distance
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from the perimeter. This will allow us to partition nodes from the outer layer
first and then work inwards. The second term ensures that the first ranked nodes
in the Fielder vector are visited first.

Let Γ =< j1, j2, j3, .... > be the rank-order of the nodes as defined by the
Fiedler vector, i.e. π(j1) < π(j2) < π(j3).....π(j|V |). We traverse this list until
we find a node k1 which is neither in the perimeter, i.e. k1 /∈ Φ and whose
score exceeds those of its neighbours, i.e. Θk1 = arg maxi∈k1∪Nk1

Θi. When this
condition is satisfied, then the node k1 together with its neighbours Nk1 represent
the first superclique. The set of nodes Ck1 = k1 ∪Nk1 are appended to a list A
that tracks the set of nodes assigned to supercliques. This process is repeated for
all the nodes which have not yet been assigned to supercliques i.e. R = Γ − A.
The procedure terminates when all the nodes of the graph have been assigned
to non-overlapping supercliques. An example performed on figure 1 is shown at
Figure 4.

5 Experiments and Comparisons

Our aim in this section is to explore how the path-weighted proximity matrix
can be used for the purposes of graph partition, and to determine whether it can
render the process more robust to structural error.

There are two aspects to our study. We commence by investigating the differ-
ence in the partitions obtained with the adjacency and path-weighted proximity
matrix. Second, we perform a sensitivity study to compare the robustance of the
partitions under node or edge deletions from both the graphs.

The graphs used here are extracted from the CMU model-house sequence.
This sequence is made up of a series of images which have been captured from
different viewpoints. Our graphs are the Delaunay triangulations of the corner-
features detected using the Luo, Cross and Hancock [8] method.

5.1 Partition and Matching Consistency Analysis

Since our graphs represent a series with similar structure, they should share
a similar partition arrangements. This is important since if we are to use the
partitions for graph-matching, then they must be stable. The more similar two
partitions, the better the matching result will be. Our aim here is to check
which matrix-representation preserves the partition consistency better. We use
the partition of the first graph as the model pattern and compare with the
partitions of the remaining graphs in the sequence.

Figure 5(a) we show the fraction of edges that remain in the same partition
as a function of the difference in view number. The green curve shows the result
obtained using the path-weighted proximity matrix, while the red curve shows
the result obtained with the adjacency matrix. For large differences in view
number, i.e. when the structural differences are greatest, then the path weighted
proximity seems to be more stable than the adjacency matrix.
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Fig. 5. Partition and Matching Analysis

In Figure 5(b) we show the fraction of correct matches as a function of dif-
ference in view number. The blue curve, which represents the path-weighted
proximity matrix, outperforms the green one from the adjacency matrix and the
red one which is the result of the EM graph matching method described [9].

5.2 Partition and Matching Stability Analysis

In this subsection we aim to measure the sensitivity of our graph partition
method to structural error, and compare the results obtained with the path-
weighted proximity matrix and the adjacency matrix.

The effects of structural error are simulated by randomly deleting nodes or
edges from the graphs under study. Figure 5(c) shows fraction of nodes that re-
main in the same partition as the graph shown in Figure 4 is subjected to increas-
ing corruption. The graph corruption rate is defined to be the number of deleted
edges divided by the total number of original edges. As the level of corruption is
increased, then the path-weighted proximity matrix outperforms the adjacency



370 H. Qiu and E.R. Hancock

Adjacency Matrix Path-weighted Matrix

Consistency
Examples

1 2

3
45

6

789
10 11

12

1314

15

161718

19

20

21
22

23

24 25

26

27

28 29

30

Number of nodes:

30

Number of edges:

78

1 2

3
45

6

789
10 11

12

1314

15

161718

19

20

21
22

23

24 25

26

27

28 29

30

Number of nodes:

30

Number of edges:

78

Stability Examples
Edge Corruption
25%

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
59

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
59

Edge Corruption
38%

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
49

1 2

34

5 6

78

9
10 11

12

13
14

15

1617
18

19

20 21

22

23
24

25

26
27

28

29

30

Number of nodes:
30

Number of edges:
49

Node Corruption
17%

1

23

4 5

67

8
9 10

11

12

13

14
15

16

17

18

19
20

21

22
23

24

25

Number of nodes:
25

Number of edges:
58

1

23

4 5

67

8
9 10

11

12

13

14
15

16

17

18

19
20

21

22
23

24

25

Number of nodes:
25

Number of edges:
58

Fig. 6. Examples of the partitions

matrix in terms of partition stability. This means that the path-weighted proxim-
ity matrix better preserves the partition structure and is more stable under struc-
tural error. This stability property has knock-on effects for the performance of the
graph-matching method. In Figure 5(d) we show the performance of the matching
process as the fraction of corruption is increased. Here the red curve is the result of
the original discrete relaxation scheme [9], the blue curve that obtained when we
apply spectral partitioning to the adjacency matrix [12], and the blue curve the
result when we apply spectral partitioning to the path-weighted adjacency ma-
trix. For large levels of corruption, the results obtained using the path-weighted
adjacency matrix outperform those obtained using the alternative methods.
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Finally, we provide some examples to illustrate the stability of the partitions
obtained. In the left hand column, we show the partitions obtained using the
adjacency matrix while the right-hand column shows the partitions obtained
using the path-weighted adjacency matrix. The differently coloured edges of the
graph indicate the different partitions obtained by the two methods. In the top
row of Figure 6 we show the partitions of the graph shown in Figure 4, and
here the result obtained using the path-weighted adjacency matrix is closer to
the original than that delivered by the adjacency matrix. The remaining rows
in Figure 6 show the effect of graph-corruption on the partitions. Rows 2 and
3 show the effect of different levels of edge corruption, and Row 4 the effect of
node corruption. In all case the path-weighted adjacency matrix is more stable
than the adjacency matrix.

6 Conclusions

In this paper, we have shown how ideas from the spectral theory of the heat
kernel can be used to construct a path-weighted proximity matrix. We have
studied its properties and this shows that it gives us more stable representa-
tion of graph-structure under structural error. Our future plans are to extend
the work in two directions. First, we aim to use the existing method for other
graph partition problems including clustering and image segmentation. Second,
we aim to use alternative methods for re-weighting the adjacency matrix. For
instance, we could use alternative statistics of the path length distribution or
modify the distribution using our recently reported heat-kernel method for graph
embedding [1].
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Recent Results on Heat Kernel Embedding of
Graphs

Xiao Bai and Edwin R. Hancock
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Abstract. This paper describes how heat-kernel asymptotics can be
used to compute approximate Euclidean distances between nodes in
a graph. The distances are used to embed the graph-nodes in a low-
dimensional space by performing Multidimensional Scaling(MDS). We
perform an analysis of the distances, and demonstrate that they are re-
lated to the sectional curvature of the connecting geodesic on the mani-
fold. Experiments with moment invariants computed from the embedded
points show that they can be used for graph clustering.

1 Introduction

The spectrum of the Laplacian matrix has been widely studied in spectral graph
theory [4] and has proved to be a versatile mathematical tool that can be put
to many practical applications including routing [1], clustering [10] and graph-
matching [13, 9]. One of the most important properties of the Laplacian spectrum
is its close relationship with the heat equation. The heat equation can be used
to specify the flow of information with time across a network or a manifold
[12]. Its solution is obtained by exponentiating the Laplacian eigensystem. For
a Riemannian manifold, the heat kernel is determined by pattern of geodesic
distances, and can provide a means of analysing both the local and global dif-
ferential geometry of the manifold. In particular, differential invariants can be
computed from the heat kernel, and these in turn are related to the Laplacian
eigensystem. This field of study is sometimes referred to as spectral geometry
and has close links with K-theory and Morse theory. It has topical interest in
particle physics, since Witten [3] has shown how such theories can be used to
understand the geometries of space-time that underpin superstrings.

There are a number of different invariants that can be computed from the
heat-kernel. Asymptotically for small time, the trace of the heat kernel [4] (or
the sum of the Laplacian eigenvalues exponentiated with time) can be expanded
as a rational polynomial in time, and the co-efficients of the leading terms in
the series are directly related to the geometry of the manifold. For instance, the
leading co-efficient is the volume of the manifold, the second co-efficient is related
to the Euler characteristic, and the third co-efficient to the Ricci curvature. The
zeta-function (i.e. the sum of the eigenvalues raised to a non-integer power) for
the Laplacian also contains geometric information. For instance its derivative at
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the origin is related to the torsion tensor. Finally, Colin de Verdiere has shown
how to compute geodesic invariants from the Laplacian spectrum [2].

In recent papers [17, 15], we have shown how heat-kernel asympotics can be
used to compute Euclidean distances between pairs of nodes in a graph. These
geodesic distances can be used to embed the nodes of the graph in a low dimen-
sional space using multidimensional scaling. Once embedded in such a space then
graph matching may be effected as point-set alignment[16], and graph clustering
can be realised using features extracted from the point-set distribution[15]. The
aim in this paper is to take the study several steps further. In particular, we focus
on the theoretical question of how the geometry of the manifold relates to the
spectrum of the heat kernel, and the practical question of how moment invariants
for the embedded points can be used to characterise and cluster graphs.

The outline of this paper is as follows. We commence in Section 2 by describ-
ing our method for computing Euclidean distances. Section 3 uses results from
spectral geometry to analyse the geodesics distances, and describes their rela-
tionship to the spectral invariants of the manifold. In Section 4 we describe how
the distances may be used to embed points in a low-dimensional space and how
the distribution of points characterised using moment invariants. Experiments
on graphs extracted from the COIL database are presented in Section 5. Finally,
Section 6 offers some conclusions and discusses directions for future work.

2 Heat Kernels and Riemannian Manifolds

In this section, we develop a method for approximating the geodesic distance
between nodes by exploiting the properties of the heat kernel. To commence,
suppose that the graph under study is denoted by G = (V, E) where V is the
set of nodes and E ⊆ V ×V is the set of edges. Since we wish to adopt a graph-
spectral approach we introduce the adjacency matrix A for the graph where

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D, whose elements are given by
D(u, u) =

∑
v∈V A(u, v). From the degree matrix and the adjacency matrix we

construct the Laplacian matrix L = D − A. The normalised Laplacian is given
by L̂ = D− 1

2 LD− 1
2 .

Spectral Analysis: The spectral decomposition of the normalised Laplacian
matrix is

L̂ = ΦΛΦT =
|V |∑
i=1

λiφiφ
T
i (2)

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigen-
values as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigen-
vectors as columns. The eigenvector associated with the smallest non-zero eigen-
vector is referred to as the Fiedler-vector. We are interested in the heat equation
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associated with the Laplacian, i.e. ∂ht

∂t = −L̂ht where ht is the heat kernel and t
is time. The solution is found by exponentiating the normalized Laplacian eigen-
spectrum i.e. ht = Φ exp[−tΛ]ΦT . The heat kernel is a |V | × |V | matrix, and for
the nodes u and v of the graph G the resulting component is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (3)

When t tends to zero, then ht & I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht & exp[−tλm]φmφT

m, where λm is the smallest non-zero eigenvalue and
φm is the associated eigenvector, i.e. the Fiedler vector. Hence, the large time
behavior is governed by the global structure of the graph.

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If Pk(u, v) is the number of paths of length k between
nodes u and v then Chung [4] has concluded that

ht(u, v) = exp[−t]
|V |2∑
k=1

Pk(u, v)
tk

k!
(4)

The path-length distribution is itself related to the eigenspectrum of the Lapla-
cian. By equating the derivatives of the spectral and path-length forms of the
heat kernel it is straightforward to show that

Pk(u, v) =
|V |∑
i=1

(1− λi)kφi(u)φi(v) (5)

The geodesic distance between nodes can be found by searching for the smallest
value of k for which Pk(u, v) is non zero, i.e. dG(u, v) = floorkPk(u, v).

Asymptotic Heat Kernel: On a Riemannian manifold, the heat kernel can
be approximated by the so-called parametric [11]

ht(u, v) = [4πt]−
n
2 exp[− 1

4t
dG(u, v)2]

∞∑
m=0

qm(u, v)tm (6)

where dG(u, v) is the geodesic distance between the nodes u and v on the Eu-
clidean manifold, n is the dimensionality of the space and qm(u, v) real-valued
co-efficients. When the manifold is locally Euclidean, then only the first term
in the polynomial series is significant and the heat kernel is approximated by a
Gaussian. Hence, to approximate the Euclidean distance between nodes in the
embedding we can equate the spectral and Gaussian forms for the kernel. The
result is

d2
E(u, v) = −4t ln

{
(4πt)

n
2

|V |∑
i=1

exp[−λit]φi(u)φi(v)
}

(7)
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3 Geometric Properties of the Heat Kernel

In this section we review some of the known geometric and topological properties
of the heat-kernel. Gilkey [5] has used spectral geometry to analyse the properties
of manifolds using the Laplacian. To commence, we note that the trace of the
heat kernel is determined by the Laplacian eigenvalues and asymptotically, for
a Riemannian manifold M with metric-tensor g we can write

Z(t) =
N∑

i=1

exp[−λit] =
1

(4πt)
n
2

∞∑
m=0

amtm (8)

The co-efficients of the polynomial appearing in the above expression is deter-
mined by the Riemannian curvature tensor for the manifold. In particular, the
co-efficient of the first term in the expansion is just the volume of the manifold,
i.e. ao = V ol[M ] = 1√

det g
, and the second co-efficient is related to the integral of

the scalar curvature κs over the manifold, i.e. a1 = 1
6

∫
M

κsdV . The first result
can be linked to the eigenvalues of the Laplacian. Suppose the eigenvalues are
sorted into increasing magnitude order, i.e. λ1 ≤ λ2 ≤ ..., then as k →∞

ao = V ol[M ] =
(2π)nk

λ
n
2
k ωn

(9)

where ωn is the area of the unit disk in Rn. The second result can be linked to
the topology of the manifold via the Gauss-Bonnet theorem. First recall that the
scalar curvature κs is related to the Gaussian curvature K via the simple formula
κs = − 1

2K. The Euler index of the manifold is related to the area integral of
the Gauss curvature by to the Gauss-Bonnet theorem

χ(M) = − 1
2π

∫
M

KdA (10)

It is interesting to note that the Euler characteristic can be computed using the
sectional curvatures for geodesic triangles on the manifold. If ks is the sectional
curvature of the geodesics and αi the jump angles of the geodesic triangles, then∫

M

KdA = 2πχ(M)−
∑

i

αi −
∫

∂M

ksds (11)

Hence, the value of a1 may be used to estimate the Euler index, or mean Gaussian
curvature, of the manifold.

The sectional curvature of a geodesic on the manifold can be estimated easily
if the Euclidean and geodesic distances are known. Suppose that the geodesic
can be locally approximated by a circle. Let the geodesic distance between the
pair of points u and v be dG(u, v) and the corresponding Euclidean distance
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be dE(u, v). Further let the maximum deviation between the geodesic and the
Euclidean chord by ξ. If the radius of curvature of the approximating circle be
rs(u, v), then we have that

ξ(rs(u, v)− ξ) =
dE(u, v)2

4
(12)

If ξ is small then the sectional curvature is given by

ks(u, v) =
1

rs(u, v)
=

4ξ

dE(u, v)2
(13)

If the geodesic path on the surface can be approximated by back-to-back right-
angled triangles of height ξ, base 1

2dE(u, v) and hypotenuse 1
2dG(u, v), then

ξ =
1
2

√
dG(u, v)2 − dE(u, v)2 (14)

Hence, the sectional curvature is given by

ks(u, v) =
2
√

dG(u, v)2 − dE(u, v)2

dE(u, v)2
(15)

Hence, with the expressions presented in the previous section of this paper, we
could in principal chart the manifold by estimating the sectional curvatures of
geodesics between nodes. The resulting representation could then be embedded
by using a procedure similar to that suggested by Lindman and Caelli [7] using
the Kruskal co-ordinates

Y (s) =

⎧⎪⎨⎪⎩
sin(

√
Ks)√

K
η if K > 0

sη if K = 0
− sinh(

√−Ks)√−K
η if K < 0

(16)

where the vector η is in the tangent space of M .

4 Multidimensional Scaling

The programme suggested in the previous section is ambitious and is the topic
on ongoing research. However, to deliver proof of concept, here we adopt a sim-
pler approach where we embed the pattern of Euclidean distances in a low di-
mensional in a manner which minimises the distortion using multidimensional
scaling(MDS). In this way we use the distribution of embedded nodes rather
than the curvature of the normalised Laplacian to charaterise the graphs under-
study. The pairwise Euclidean distances between nodes dE(u, v) are used as the
elements of an |V | × |V | dissimilarity matrix S, whose elements are defined as
follows

S(u, v) =
{

dE(u, v) if u �= v
0 if u = v

(17)
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The first step of MDS is to calculate a matrix T whose element with row r
and column c is given by T (r, c) = − 1

2 [dE(r, c)2− d̂E(r, .)2− d̂E(., c)2 + d̂E(., .)2],
where d̂E(r, .) = 1

|V |
∑|V |

c=1 dE(r, c) is the average dissimilarity value over the

rth row, d̂E .c is the dissimilarly defined average value over the cth column and
d̂E(., .) = 1

|V |2
∑|V |

r=1
∑|V |

c=1 dE(r, c) is the average dissimilarity value over all rows
and columns of the dissimilarity matrix T .

We subject the matrix T to an eigenvector analysis to obtain a matrix of
embedding co-ordinates X. If the rank of T is k, k ≤ |V |, then we will have k non-
zero eigenvalues. We arrange these k non-zero eigenvalues in descending order,
i.e. l1 ≥ l2 ≥ . . . ≥ lk > 0. The corresponding ordered eigenvectors are denoted
by ui where li is the ith eigenvalue. The embedding co-ordinate system for the
graphs obtained from different views is X = [f1, f2, . . . ,fs], where fi =

√
liui

are the scaled eigenvectors. For the graph node indexed i, the embedded vector
of co-ordinates is xi = (Xi,1, Xi,2, ..., Xi,s)T .

We use spatial moments to characterise the embedded point sets. The general
moment is defined to be

μpq =
|V |∑
i=1

|V |∑
j=1

(Xi,1 − X̂1)p(Xj,2 − X̂2)q (18)

where X̂k = 1
|V |
∑|V |

i=1 Xi,k. From the raw moment data, we compute the four
affine invariants suggested by Flusser and Suk [8]:

I1 =
μ20μ02 − μ2

11

μ4
00

(19)

I2 =
μ2

30μ
2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12 + 4μ3

21μ03 − 3μ2
21μ

2
12

μ10
00

(20)

I3 =
μ20(μ21μ03−μ212)−μ11(μ30μ03−μ21μ12)+μ02(μ30μ12−μ2

21)

μ7
00

(21)

I4 = (μ3
20μ

2
03 − 6μ2

20μ11μ12μ03 − 6μ2
20μ02μ21μ03 + 9μ2

20μ02μ
2
12 (22)

+12μ20μ
2
11μ21μ03 + 6μ20μ11μ02μ30μ03 − 18μ20μ11μ02μ21μ12

−8μ3
11μ30μ03 − 6μ20μ

2
02μ30μ12 + 9μ20μ

2
02μ

2
21

+12μ2
11μ02μ30μ12 − 6μ11μ

2
02μ30μ21 + μ3

02μ
2
30)/μ11

00

The four moment invariants are used to compute the graph feature vector F =
(I1, I2, I3, I4)T . We apply PCA to these feature vectors to project the pattern-
spaces for sets of graphs.

5 Experiments

We have applied our embedding method to images from the COIL data-base.
The data-base contains views of 3D objects under controlled viewer and lighting
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Fig. 1. Eight objects with their Delaunay graphs overlayed

conditions. For each object in the data-base there are 72 equally spaced views,
which are obtained as the camera circumscribes the object. We study the images
from eight example objects. A sample view of each object is shown in Figure 1.
For each image image of each object we extract feature points using the method
of [6]. We have extracted graphs from the images by computing the Voronoi
tessellations of the feature-points, and constructing the region adjacency graph,
i.e. the Delaunay triangulation, of the Voronoi regions. Our embedding procedure
has been applied to the resulting graph structures.

We commence by investigating the behavior of the moments extracted from
the embedded points. In Figure 2 we plot the four moments as a function of the
time parameter t, we choose the duck graph on the top of the left in Figure 1 for
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Fig. 2. Moments as a function of t for a graph from the Coil database
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Fig. 3. Individual moment from the COIL database as a function of view number
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our experiment graph. The main effect to note here is that as the time parameter
increases then so the four moments become small and indistinguishable. In Fig-
ures 3 we plot the four moments separately as a function of the view number for
the images of the eight objects studied in the COIL data-base. From the top-left
and clockwise the sequence shows the first, second, third and fourth moments
respectively. The individual moments appear relatively stable with view number.
It is clear that although the individual moments could not be used to distinguish
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Fig. 4. Embedding with varying t

Distance Matrix t=0.01*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Distance Matrix t=1*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Distance Matrix t=4*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Distance Matrix t=10*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Distance Matrix t=100*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Distance Matrix t=10000*pi

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

550

Fig. 5. Distance matrices with varying t

−6

−4

−2

0

2

4

6

8

−2

0

2

4

6

8
−3

−2

−1

0

1

2

3

4

Spectral Clustering Result

object1
object2
object3
object4
object5
object6
object7
object8

Fig. 6. Spectral Clustering Result



Recent Results on Heat Kernel Embedding of Graphs 381

0.01*pi 0.1*pi 1*pi 2*pi 4*pi 10*pi 20*pi 100*pi 1000*pi 10000*pi
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ra
nd

 ind
ex

Heat kernel clustering Rand index
Spectral method clustering Rand index

Fig. 7. Rand index for the heat-kernel and spectral clustering methods

the objects since their traces with view number overlap, when combined they
are sufficient to distinguish the objects.

Based on this study of the moments, it appears that they may provide the
basis for a stable clustering of the graphs. We have therefore performed PCA on
vectors whose components are the four moments. The data has been projected
onto the space spanned by the leading three eigenvectors for the moment-vectors.
We then investigate the effect of varying the time parameter t. In Figure 4
we show the effect on the graph embeddings when we vary t from 0.01π to
10000π. In the top row of the figure from left to right, we show the clustering
results obtained when t equals 0.01π,1π and 4π. In the bottom row, we show the
results when t equals 10π, 100π and 10000π from left to right. In the figures the
different views of the same object are displayed as differently colored symbols.
In Figures 5 we show corresponding plots for the pairwise distances for the
embedded graph nodes. The main feature to note from these plots is that as the
value of t increases, then so the clusters corresponding to the different objects
become overlapped.

For comparison, Figure 6 shows the corresponding result when spectral clus-
tering is used. Here we use the leading eigenvalues of the adjacency matrix as the
components of a feature vector. The main qualitative feature is that the different
views of the ten objects are more overlapped than when the heat-kernel method
is used with a low value of t.

To investigate the behavior of the two methods in a more quantitative way,
we have plotted the Rand index [14] for the different objects. The Rand index
is defined as: RI = A

A+D where A is the number of ”agreements” and D is the
number of ”disagreements” in cluster assignment. The index is hence the fraction
of views of a particular class that are closer to an object of the same class than
to one of another class. The solid curve in the plot shows the Rand index as a
function of t. The performance of the method drops off rapidly once t exceeds
2π. The Rand index for the spectral clustering method is shown as a dotted line.

6 Conclusions

In this paper we have shown how the Laplacian spectrum can be used to compute
both Euclidean and geodesic distances between nodes in a graph. We provide a
discussion which shows how the geometry of the manifold on which the nodes
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reside can be linked to the properties of the heat kernel of the graph. This sug-
gests that the manifold could be charted using information provided by the two
distances. The analysis leads us to a simpler pragmatic approach to the prob-
lem where we perform low distortion embedding the Euclidean distances using
MDS. The geometry of the embedded points is captured using affine moment
invariants, and these are demonstrated to deliver good graph-clusters.
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Roli, Fabio 281
Ros, Julien 72

Sakai, Tomoya 322
Serrau, Alessandra 281
Severini, Simone 153
Simand, Isabelle 72
Skourikhine, Alexei N. 12
Soler, Luc 183
Solnon, Christine 172



384 Author Index
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